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ABSTRACT
Soybean is a major global source of protein and oil. Understanding how soybean crops will respond to the chang-

ing climate and identifying the responsible molecular machinery are important for facilitating bioengineering and 
breeding to meet the growing global food demand. The BioCro family of crop models are semi-mechanistic models 
scaling from biochemistry to whole crop growth and yield. BioCro was previously parameterized and proved effec-
tive for the biomass crops Miscanthus, coppice willow and Brazilian sugarcane. Here, we present Soybean-BioCro, 
the first food crop to be parameterized for BioCro. Two new module sets were incorporated into the BioCro frame-
work describing the rate of soybean development and carbon partitioning and senescence. The model was parameter-
ized using field measurements collected over the 2002 and 2005 growing seasons at the open air [CO2] enrichment 
(SoyFACE) facility under ambient atmospheric [CO2]. We demonstrate that Soybean-BioCro successfully predicted 
how elevated [CO2] impacted field-grown soybean growth without a need for re-parameterization, by predicting 
soybean growth under elevated atmospheric [CO2] during the 2002 and 2005 growing seasons, and under both 
ambient and elevated [CO2] for the 2004 and 2006 growing seasons. Soybean-BioCro provides a useful foundational 
framework for incorporating additional primary and secondary metabolic processes or gene regulatory mechanisms 
that can further aid our understanding of how future soybean growth will be impacted by climate change.

K E Y W O R D S :  Climate change; crop modelling; elevated [CO2]; semi-mechanistic modelling, soybean.

1 .  I N T R O D U C T I O N
Soybean (Glycine max) is the fourth most important seed crop in terms 
of global production with major production areas in North America, 
South America and Asia (Pagano and Miransari 2016). Soybeans have 
the highest protein content and second highest oil content among the 
major food crops (Nafziger 2016). In addition to being a popular pro-
tein source in human diets, soybean is a major component of livestock 
and aquaculture feed, vegetable oil and biodiesel (United Soybean 
Board 2020). Future soybean production is dependent on the ability 
of soybean crops to adapt to climate change and the associated abiotic 

and biotic stressors. Plants are complex, sessile organisms that survive 
using internal regulatory mechanisms and machinery to respond to 
stressors and resources that impact plant growth and health such as 
rising [CO2] levels, drought, flooding, decreased and elevated tem-
peratures, nutrient deficiency and nutrient sufficiency (Musser et  al. 
1983; Seddigh et al. 1989; Srinivasan and Arihara 1994; Kurosaki and 
Yumoto 2003; Das et al. 2016; Haak et al. 2017; Coutinho et al. 2018; 
Jähne et al. 2019).

As a limiting substrate for photosynthesis, rising atmospheric 
[CO2] is expected to have a large impact on crop development and 
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yield (Ainsworth et al. 2007; Wang et al. 2008; Bishop et al. 2015). The 
rate of increase of atmospheric [CO2] year to year was approximately 
0.9 ppm per year in the 1960s rising to an average of 2.4 ppm per year 
from 2009 to 2019, resulting in 415 ppm in 2020 (Tans and Keeling 
2021). Atmospheric [CO2] is expected to continue rising with pro-
jections ranging from 800 to more than 1100 ppm by the year 2100 
(Collins et al. 2013). Global temperatures are also rising and becom-
ing more variable leading to more frequent extreme heat and other 
weather events (Herring et al. 2018).

Understanding how soybean crops will respond to these abiotic 
stressors and identifying the molecular machinery causing these 
responses are important tasks for sustainable growth of soybean with 
increased demand and improved nutritional content. Studies explor-
ing soybean responses and behaviour have been carried out at several 
biological levels of organization: genetic (Hyten et al. 2010; Lam et al. 
2010; Qiu et al. 2013; Song et al. 2015; Zhou et al. 2015), transcrip-
tomic (Choi et  al. 2007; Leakey et  al. 2009), proteomic (Das et  al. 
2016; Muñoz et  al. 2016), metabolomic (Das et  al. 2017; Coutinho 
et  al. 2018) and phenotypic (Morgan et  al. 2005). Pooling these 
resources may help to further explore how soybean crops will respond 
to a changing climate and identify potential strategies to improve soy-
bean growth, yield and nutrition under these scenarios.

Computational models are one tool used to explore how plants 
will respond under different stress conditions. Once developed, com-
putational models can be used to test a number of different scenarios 
that would otherwise be time or cost-prohibitive to perform experi-
mentally (Prusinkiewicz and Runions 2012). Computational models 
can also help uncover new insights about the underlying machinery 
of biological systems (Prusinkiewicz and Runions 2012). There are 
multiple models to predict the growth of our major crops, including 
soybean. Current models, however, are generally based on the wealth 
of empirical data collected across years and geographical locations. 
These empirical relationships, however, are not designed for future 
climate scenarios where crop response to higher atmospheric [CO2], 
interacting with changes in temperature, precipitation, and other 
soil and climate factors, is not known. Understanding how crops will 
respond under these climate scenarios requires predicting outside of 
experience, which is best done by capturing the known mechanisms 
by which plants respond to rising [CO2], temperature and other vari-
ables in combination. BioCro is designed to accommodate such mech-
anisms. Mechanistic models of crop processes improve our ability to 
explore how a changing environment may impact crop growth, and 
can help identify strategies for engineering crops for improved perfor-
mance under these scenarios (Kannan et al. 2019). Mechanistic mod-
els often require large amounts of information that can be difficult to 
obtain. However, by creating a modular framework, we can integrate 
mechanistic descriptions of crop model dynamics, created by domain 
experts, as they become developed (Marshall-Colon et al. 2017). Such 
domains include photosynthesis, respiration, partitioning, phenology 
and whole plant metabolism among others.

BioCro (Miguez et  al. 2009) is a modular, semi-mechanistic 
dynamic crop growth model framework simulated using site-specific 
soil properties and hourly weather measurements including solar radi-
ation, wind speed, precipitation, temperature and humidity. BioCro is 
based on WIMOVAC (Humphries and Long 1995; Humphries 2002) 

and built on underlying biophysical and biochemical photosynthesis 
mechanisms that respond to changes in atmospheric [CO2], tempera-
ture (Bernacchi et al. 2001, 2003; Yang et al. 2016) and water availabil-
ity. Further, BioCro is designed for easy expansion to incorporate new 
and more informed modules.

Previously BioCro has been parameterized for the C4 biomass 
crops Miscanthus × giganteus (Miguez et al. 2009), Panicum virgatum 
(Miguez et al. 2012), Brazilian sugarcane ( Jaiswal et al. 2017) and C3 
coppiced willow (Wang et al. 2015). BioCro has been used to spatially 
explore crop growth over large areas such as M. × giganteus and P. vir-
gatum growth in the conterminous USA (Miguez et  al. 2012), M. × 
giganteus and coppice willow growth in Denmark (Larsen et al. 2016) 
and Brazilian sugarcane in Brazil ( Jaiswal et  al. 2017). Larsen et  al. 
found that soil characteristics were an important factor to whether 
Miscanthus or willow would be more productive in different regions 
of Denmark, and that variation in soil moisture was a more impor-
tant contributor to yield than radiation or precipitation (Larsen et al. 
2016). Jaiswal et al. applied BioCro to project sugarcane growth across 
Brazil using five major global circulation climate change models and 
multiple land use scenarios, and evaluated sugarcane’s applicability as 
an alternative to crude oil ( Jaiswal et al. 2017).

Here, we present Soybean-BioCro, the first food crop to be mod-
eled using the BioCro family of crop growth models. We incorporated 
two new sets of modules into BioCro: (i) carbon partitioning and 
senescence modules using logistic functions based on the framework 
used in JULES-crop (Osborne et al. 2015); and (ii) a soybean devel-
opment rate module based on selected functions from the SOYDEV 
model (Setiyono et al. 2007). The logistic equation-based partitioning 
module works on the same principles as a carbon partitioning table 
commonly used in crop growth models. These partitioning tables 
define a set percentage of the net carbon assimilated to be allocated to 
each of the crop organs at a given time. Typically, partitioning tables 
have used piecewise constant functions to define the fraction of car-
bon allocated to each crop organ throughout a growing season. To 
adequately capture the non-linear carbon allocation strategies across 
a growing season, however, can require many piecewise components, 
increasing the number of parameters needed. Logistic functions can 
capture this behaviour using fewer parameters. We added a specific 
soybean development rate module for Soybean-BioCro since soybean 
growth is dependent on both temperature and night length (Setiyono 
et al. 2007). As such, the accumulated thermal time that has been used 
as a proxy for crop development in other BioCro crops, which were 
non-flowering or allocated only a tiny fraction of biomass to seed, was 
not adequate for predicting soybean development across different 
growing seasons.

These modules resulted in improved parameterization for carbon 
partitioning and biomass senescence, and improved development stage 
prediction needed for accurate partitioning and senescence across dif-
ferent years. Partitioning and senescence parameters were determined 
using an evolutionary optimization algorithm to fit the predicted leaf, 
stem and pod biomass results to experimentally measured biomasses 
for the cultivar Pioneer 93B15 under ambient atmospheric [CO2] over 
the 2002 and 2005 growing seasons at the SoyFACE facility in Urbana, 
IL (Bernacchi et  al. 2005; Morgan et  al. 2005; Bishop et  al. 2015). 
From this we successfully predicted the leaf, stem and pod biomasses 
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in ambient [CO2] (2004, 2006) and elevated [CO2] (2002, 2004–06), 
demonstrating that Soybean-BioCro accurately predicts leaf, stem and 
pod biomasses under elevated [CO2] conditions from mechanistic 
photosynthetic principles.

2 .  M ET H O D S
2.1 BioCro

The core modules of the BioCro family of crop models include 
canopy photosynthesis, canopy energy balance, soil-water pro-
cesses, crop development rate, carbon allocation and senescence. 
Soybean-BioCro uses several previously developed BioCro modules 
(Humphries 2002; Miguez et al. 2009, 2012; Wang et al. 2015; Larsen 
et  al. 2016; Jaiswal et  al. 2017), including (i) a 10-layer sun-shade 
canopy model that incorporates the light interception, humidity and 
wind speed profiles throughout the canopy layers; (ii) C3 photosyn-
thesis and canopy energy balance models and (iii) a two-layer soil 
profile model that uses site-specific soil properties to calculate the 
water available for growth and the impact of water stress on stomatal 
function. In addition to these modules, we added two new module 
sets for Soybean-BioCro, a soybean development rate module based 
on the SOYDEV model (Setiyono et al. 2007), and logistic equation 
partitioning growth and senescence modules based on the partition-
ing growth framework used in the JULES-crop model (Osborne 
et al. 2015). The two new BioCro module sets are described in the 
following sections. The equations, parameters and initial values used 
in all of the Soybean-BioCro modules are described in Supporting 
Information—Text S1.

2.1.1 Soybean development rate  module. The soybean develop-
ment rate module is split into five phases that calculate development 
rate from (i) sowing to emergence (VE), (ii) emergence to the coty-
ledon stage (V0), (iii) the cotyledon stage to the end of floral induc-
tion (R0), (iv) the end of floral induction to flowering (R1) and 
(v) flowering to maturity (R7). We mapped these phases to a crop 
neutral development index (DVI) used in the partitioning growth 
module, with

−1 ≤ DVI < 0 : Sowing− VE
0 ≤ DVI < 1

3 : VE− V0
1
3 ≤ DVI < 2

3 : V0− R0
2
3 ≤ DVI < 1 : R0− R1
1 ≤ DVI : R1− R7.

2.1.1.1 Sowing to emergence: -1  ≤ DVI <  0. We used accumulated 
thermal time to calculate the development rate for phase (i) sowing 
to emergence.

r =
temp− Tb

TTemr (1)

where r  is the soybean development rate, temp is the air temperature 
which we use as a proxy for soil temperature, Tb  is the base or mini-
mum air temperature necessary for soybean to grow and TTemr  is the 
accumulated thermal time at which emergence occurs.

2.1.1.2 Emergence to maturity: 0 ≤ DVI. From phases (ii) emergence 
to (v) maturity we used a subset of the SOYDEV photothermal func-
tions (Equations (2)–(7)) (Setiyono et al. 2007).

r = RmaxfTfP (2)

where,

fT(t,Tmin,Topt ,Tmax) =

(
2(t−Tmin)

α(Topt−Tmin)
α−(t−Tmin)

2α

(Topt−Tmin)
2α , if Tmin < t < Tmax.

0, else.

 (3)

α =
ln(2)

ln
Ä
Tmax−Tmin
Topt−Tmin

ä
 (4)

fP( p, Popt , Pcrit) =





îÄÄ
1+ p−Popt

m

ä Ä
Pcrit−p
Pcrit−Popt

ääγóβ
, if Popt ≤ p ≤ Pcrit .

1, if p < Popt .
0, if p > Pcrit .

 (5)

β =
ln(2)

ln
Ä
1+ Pcrit−Popt

m

ä
 (6)

γ =
Pcrit − Popt

m (7)

Rmax is the maximum development rate. The temperature response 
function fT scales the development rate as a function of tempera-
ture. At the optimal temperature, Topt , fT = 1. When the tempera-
ture is below Tmin or above Tmax  then fT = 0  and therefore the 
development rate r = 0. The photoperiod response function fP  
scales the development rate as a function of day length. When the 
day length is greater than the critical day length, Pcrit , fP = 0 and the 
development rate r = 0. When the day length is less than or equal to 
the optimal day length for development, Popt , then fP = 1. For some 
phases, the development rate is dependent on only temperature (
r = RmaxfT) or only day length (r = RmaxfP) as defined in (Setiyono 
et al. 2007). In our simulations, we used the SOYDEV temperature 
and photoperiod parameters for maturity group 3 soybean culti-
vars (Setiyono et al., 2007). A complete list of all of the parameters 
and equations for the five developmental phases are included in 
Supporting Information—Text S1 (Table S6, Eqs S82–S101).

2.1.2 Logistic equation-based carbon partitioning and senes-
cence modules. We created a new set of carbon partitioning modules 
based on the logistic-based functions from the JULES-crop land simu-
lation model (Osborne et al., 2015).

kRoot =
exp(αR + βRx)

exp(αR + βRx) + exp(αL + βLx) + exp(αS + βSx) + 1

 (8)
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kLeaf =
exp(αL + βLx)

exp(αR + βRx) + exp(αL + βLx) + exp(αS + βSx) + 1

 (9)

kStem =
exp(αS + βSx)

exp(αR + βRx) + exp(αL + βLx) + exp(αS + βSx) + 1

 (10)

kPod =
1

exp(αR + βRx) + exp(αL + βLx) + exp(αS + βSx) + 1

 (11)
where kRoot, kLeaf , kStem and kPod represent the fraction of the net 
carbon assimilated that is allocated to each of the four plant organs 
over the growing period. Osborne et  al. used a developmental index 
(DVI) that ranged from −1 to 2, representing emergence, vegetative 
and reproductive development periods, as the dependent variable, x, 
in their implementation of this partitioning growth model (Osborne 
et al. 2015). Other metrics such as accumulated thermal time or crop-
specific development stages can also be used. For Soybean-BioCro, we 
used a DVI range from −1 to 2+ that mapped to specific development 
phases as predicted by the soybean development rate module (Section 
2.1.1). The αR ,βR ,αL,βL,αS,βS parameters define the shape of the 
partitioning functions over the growing period (Fig. 1C).

We used a similar approach to model leaf and stem senescence. 
We determined what fraction of the leaf, sLeaf , and stem, sStem, bio-
masses that are senesced at each point in the growing season using the 

switch-like logistic function (Equations (12) and (13)). rsL  is the max-
imum fraction of leaf biomass that will be senesced at a given point. 
and αsL  and βsL determine when the leaf starts to senesce. rsS, αsS and 
βsS are the corresponding parameters for stem senescence. In our simu-
lations, we assumed that the root and pod do not senesce.

sLeaf =
rsL

1+ exp(αsL + βsLx) (12)

sStem =
rsS

1+ exp(αsS + βsSx) (13)

2.2 Parameter optimization
The parameters for carbon partitioning (αR ,βR ,αL,βL,αS,βS,  
Equations (8)–(11)) and senescence (rsL,αsL,βsL, rsS,αsS,βsS , 
Equations (12) and (13)) were obtained using the DEOptim func-
tion (Mullen et al. 2011) to minimize the weighted mean square errors 
(MSEs) between the predicted and measured biomasses for the 2002 
and 2005 growing seasons at SoyFACE under ambient atmospheric 
[CO2] (Equations (14)–(16)).

For each shoot tissue (leaf, stem and pod), we squared the differ-
ence between the predicted biomass ŷ and the average of the measured 
biomasses for that tissue, ȳ, for each of the N  days where the biomass 
was experimentally measured. For the 2002 and 2005 growing seasons, 
the leaf, stem and pod biomasses were measured N = 8 times through-
out the growing seasons. We scaled this error term by the maximum of 

Figure 1. Simulated root, leaf, stem and pod biomasses and the experimental leaf, stem and pod biomasses used for parameter 
fitting, under ambient atmospheric [CO2] in (A) 2002 and (B) 2005. (C) Fraction of carbon allocated to the four crop organs over 
the 2002 growing season.

D
ow

nloaded from
 https://academ

ic.oup.com
/insilicoplants/article/4/1/diab032/6453473 by U

niversity of Illinois - U
rbana C

ham
paign user on 03 April 2024



Soybean-BioCro • 5

the measured biomass, max(ȳ), for a given tissue to remove bias in the 
optimization algorithm due to the different ranges of the leaf, stem and 
pod biomasses. We took the average of these squared errors to calculate 
the MSE for the leaf, stem and pod tissues (Equation (15)).

As root biomass was not measured, we assumed the root biomass 
would grow to 17 % of the maximum of the total measured shoot bio-
mass (Ordóñez et al. 2020). The error term for root biomass (Equation 
(16)) is the squared error between the maximum predicted root bio-
mass, max(ŷRoot) and 17 % of the maximum of the average measured 
shoot biomass (max(ȳShoot)). Where ȳShoot = ȳLeaf + ȳStem + ȳPod. 
The root error term was also divided by N  to give it equal weight as 
one time point in the leaf, stem or pod error terms.

m in
α,β,rs

ELeaf + EStem + EPod + ERoot
 (14)

Ei = 1
N

N∑
j=1

wi,j

Ä ŷi,j−ȳi,j
max(ȳi)

ä2
i ∈ {Leaf, Stem, Pod}

 (15)

ERoot =
1
N

Å
max(ŷRoot)− 0.17 · max(ȳShoot)

0.17 · max(ȳShoot)

ã2
 (16)

We further assigned a heavier cost to prediction errors at the time 
points where the measured leaf, stem and pod biomasses had smaller 
amounts of variation by defining weights, wi,j, that were inversely pro-
portional to the amount of variation in the experimental measure-
ments (Equation (17)).

wi,j = ln 1
σi,j+ε i ∈ {Leaf, Stem, Pod}, j = 1...N

 (17)

σi,j is the standard deviation of the measured biomasses of that plant 
organ at measured time j, and ε is a small value (e.g. 1e-5). We provide 
the code used to perform this parameter optimization in the GitHub 
repository (https://github.com/cropsinsilico/Soybean-BioCro).

2.3 Weather data and processing
The temperature, relative humidity, wind speed and photosyntheti-
cally active radiation (PAR) for the 2002, 2004–06 soybean growing 
season were obtained from the NOAA-ESRL SURFRAD Bondville, 
IL site which is ∼7 miles west of the SoyFACE facility. The data can 
be accessed at ftp://aftp.cmdl.noaa.gov/data/radiation/surfrad/
Bondville_IL/. The SURFRAD measurements were recorded at 3-min 
intervals. For each hour, we took the average of the reported measure-
ments across that hour. The SURFRAD data come with quality check 
flags to indicate whether there are potential issues with the reported 
measurements. Any measurements that were flagged as having a qual-
ity issue were removed. Any missing measurements that remained after 
averaging the measurements over all the recorded points that hour 
were imputed from other data. We describe the data imputation steps 
in detail in the GitHub repository (https://github.com/cropsinsilico/
Soybean-BioCro). No measurements were imputed for the 2002 soy-
bean growing season. For the 2004 soybean growing season, 0.8  % 
of the PAR, and 0.3 % of the humidity, temperature and wind speed 
measurements were imputed. For the 2005 growing season, 0.03 % of 
the wind speed measurements were imputed. For the 2006 soybean 

growing season, 0.3 % of the PAR, 0.8 % of the humidity, 0.3 % of the 
temperature and 3.9 % of the wind speed measurements were imputed.

Daily precipitation was obtained from the Illinois Water and 
Atmospheric Resources Monitoring (WARM) site in Champaign, IL 
which is 3 miles north of the SoyFACE facility. The daily precipitation 
was evenly divided across the 24 h in a day. Day length was calculated 
using an oscillator clock model included in BioCro (Lochocki and 
McGrath 2021). The code for producing the weather input files is pro-
vided in the linked GitHub repository.

3 .  R E S U LT S
3.1 Predicting soybean leaf, stem and pod biomasses 

in ambient and elevated [CO2]
We used an evolutionary optimization algorithm (Mullen et al. 2011) 
to identify the parameters for the BioCro partitioning and senescence 
modules [see Supporting Information—Table S5] that minimized 
the predicted error of the leaf, stem and pod biomasses under the aver-
age ambient atmospheric [CO2] (372  ppm) of 2002 (Fig. 1A) and 
2005 (Fig. 1B) growing seasons (Table 1, see Methods).

We simulated the 2002 and 2005 growing seasons under elevated 
atmospheric [CO2] (550 ppm) conditions, altering only the associated 
Catm (atmospheric [CO2]) parameter. We further simulated the 2004 
and 2006 growing seasons under both ambient and elevated [CO2] 
conditions (Fig. 2). For all four growing seasons, the model predicted 
leaf and stem biomasses that were consistent with the experimental 
observations under both ambient and elevated [CO2] conditions (Fig. 
2A–G) and with similar MSEs as the 2002 and 2005 predictions under 
ambient [CO2] that were used for parameter fitting (Table 1).

Similarly, the predicted pod biomasses for 2002, 2005 and 2006 
were also consistent with the experimental observations (Fig. 2I, K and 
L). For the 2004 growing season, however, the model over-predicted 
the maximum pod biomass by ∼25 and ∼15 % in ambient and elevated 
[CO2], respectively (Fig. 2J; Table 1).

Predicted leaf area index (LAI) measurements were consistent with 
experimental measurements under ambient and elevated [CO2] for 
the 2004 season and under elevated [CO2] for the 2006 growing sea-
son (Fig. 3A and C). The model under-predicted the LAI for the first 
half of the 2006 growing season under ambient [CO2] (Fig. 3C); how-
ever, this did not correspond to an under-prediction of the leaf biomass 

Table 1. Mean square errors of simulated versus measured leaf, 
stem and pod biomasses. The rows highlighted in grey indicate 
the cases that were used for parameter fitting.

Year [CO2] ppm Leaf Stem Pod

2002 372 (fit) 0.29 0.49 0.30

550 0.43 0.59 0.37
2004 372 0.24 0.39 0.96

550 0.36 0.43 1.00

2005 372 (fit) 0.29 0.36 0.95

550 0.44 0.58 0.80
2006 372 0.16 0.44 0.69

550 0.22 0.69 0.40
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(Fig. 2D). For the 2005 growing season LAI was over-predicted in the 
middle of the growing season for both ambient and elevated [CO2] 
(Fig. 3B). The experimental LAI and leaf biomass measurements (Fig. 
2C) indicate that in 2005, the crops started to senesce earlier than the 
predicted onset of senescence in the model.

For all of the four growing seasons, the model predicted that the 
maximum leaf, stem, shoot and pod biomasses were increased by ∼20, 
∼20, ∼14 and ∼12  %, respectively, under elevated [CO2] compared 
to ambient conditions (Table 2). Conversely, the predicted pod to 
shoot ratio, which is related to the harvest index, decreased by ∼1.5 % 
(Table 2). These predictions are consistent with experimental results 
from soybean FACE experiments (Morgan et al. 2005; He et al. 2014; 
Bishop et al. 2015).

The over-predicted pod biomass in 2004 (Fig. 2J) indicates that 
there was some other environmental stressor impacting the pod bio-
mass that was not accurately accounted for in our model. The recorded 
rainfall and predicted soil-water content were similar across the four 
growing seasons [see Supporting Information—Fig. S1], suggest-
ing that drought was not the cause of the over-prediction. The average 
temperature during the 2004 growing season, 19.7  °C, however was 
2–3 degrees cooler than the average temperatures of the 2002, 2005 and 
2006 growing seasons, which were 22.3, 23.1 and 21.9°C, respectively 
(Fig. 4). BioCro’s C3 photosynthesis module (Eqs S32–S46) includes 
functions that describe the temperature-dependent response of the 
C3 photosynthetic machinery at the biochemical and biophysical lev-
els for Rubisco (Bernacchi et al. 2001), RuBP (Bernacchi et al. 2003)  

Figure 2. Predicted and experimental (A–D) leaf, (E–H) stem and (I–L) pod biomasses over the 2002 and 2004–06 growing 
seasons under ambient (372 ppm) and elevated (550 ppm) atmospheric [CO2].
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and TPU (Yang et al. 2016) limiting photosynthesis rates. During the 
late reproductive stages, where pod was over-predicted in 2004, the 
2002, 2004 and 2006 growing seasons all saw similar cold tempera-
tures, 17.2, 16.4, 16.6  °C on average, respectively. This suggests that 
cool temperatures during this period were not responsible for the dis-
crepancy between the model prediction and the measured biomass. 
During the early reproductive stages, however, 2004 experienced 
colder temperatures than the other 3 years, with an average tempera-
ture of 20.0 °C for 2004 and 24.1, 24.1 and 24.0 °C in 2002, 2005 and 
2006, respectively, during this period (Fig. 4). The predicted leaf and 
stem biomasses during this early reproductive phase of the 2004 grow-
ing season were consistent with experimental results (Fig. 2B and F). 
The onset of pod biomass was predicted to begin earlier than observed 
during this same period, but the predicted early onset does not com-
pletely account for the over-prediction (Fig. 2J). These results indicate 
that the temperature effects on photosynthesis do not account for the 
discrepancy between the predicted and measured pod biomass, but 
suggest that there may be additional temperature stress effects occur-
ring in the early reproductive phase that limit the sink strength of the 
pod in the late reproductive stages.

4 .  D I S C U S S I O N
Here, a soybean version of the semi-mechanistic BioCro crop growth 
model was successfully developed. This marks the first food crop to 
be included in the BioCro family of crop models. We added two new 

sets of modules to BioCro: (i) logistic-based carbon partitioning and 
senescence modules, and (ii) a development rate module that uses 
photothermal functions to calculate soybean development over a 
growing season. While these modules were specifically developed for 
Soybean-BioCro, they can also be used to model other BioCro crops. 
We parameterized the partitioning and senescence modules on leaf, 
stem and pod biomass data collected across two growing seasons, 2002 
and 2005, at the SoyFACE facility in Urbana, IL under ambient atmos-
pheric [CO2] conditions. Using these parameters, we successfully pre-
dicted the LAI and leaf, stem and pod biomasses in elevated [CO2] for 
2002 and 2005, and ambient [CO2] and elevated [CO2] levels for the 
2004 and 2006 growing seasons at the SoyFACE facility. In most cases, 
we were able to use BioCro to accurately predict soybean LAI and leaf, 
stem and pod biomasses over the growing seasons by only changing 
the input atmospheric [CO2] levels (Fig. 2). The exceptions were the 
predicted pod biomass during the 2004 growing season (Fig. 2J) and 
LAI for part of the 2005 and 2006 growing seasons (Fig. 3B and C). 
For the 2004 growing season, the BioCro model over-predicted the 
maximum pod biomass under both ambient and elevated [CO2]. One 
explanation for this discrepancy could be the colder temperatures dur-
ing the early reproductive stages of the 2004 season (Fig. 4B). Cooler 
temperatures, especially below 15 and 10 °C, during flowering and pod 
formation stages have been shown to impact pod formation, seed abor-
tion and yield, resulting in fewer pods and seeds per pod (Musser et al. 
1983; Seddigh et al. 1989; Srinivasan and Arihara 1994; Kurosaki and 
Yumoto 2003; Jähne et  al. 2019). While the BioCro model includes 
functions to model the temperature response of the photosynthetic 
pathway, cold temperature stress has been shown to have a greater 
impact on carbon sinks (Wingler 2015; White et al. 2016; Sonnewald 
and Fernie 2018).

Experimental measurements of the leaf biomass from the 2005 
growing season indicate an earlier onset of senescence than what 
was predicted by the model, especially under elevated [CO2] (Fig. 
2C). While our senescence module is dependent on the soybean 
development rate, it does not incorporate other environmental 
feedbacks that may impact when a crop begins to senesce. Better 

Figure 3. Predicted and measured LAI under ambient and elevated [CO2] for 2004–06.

Table 2. Relative maximum biomasses (elev. [CO2]/amb. 
[CO2]).

Year Leaf Stem Shoot Pod Pod:Shoot

2002 1.21 1.21 1.14 1.12 0.98
2004 1.19 1.18 1.14 1.13 0.99
2005 1.20 1.19 1.14 1.13 0.99
2006 1.20 1.20 1.14 1.12 0.98
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capturing sink constraints, and incorporating temperature or other 
environmental feedbacks to processes like carbon allocation and 
senescence, is an area for future improvement of the BioCro model. 
Overall, however, the results show the capability of Soybean-
BioCro to predict beyond experience, particularly in the case of 
elevated [CO2].

A strength of BioCro is its modularity. The BioCro framework was 
designed as a platform for multiple crops, where a crop species or cul-
tivar is defined externally and not hardwired into the code. For exam-
ple, the multilayer C3 canopy module used in Soybean-BioCro can be 
used to model any C3 crop without re-writing the module code since 
crop- or location-specific parameters are defined separately as inputs 
to a BioCro simulation. Further, new modules describing domain-
specific processes can be easily added to the BioCro framework, and 
used with all crops parameterized in the framework. There has been 
recent effort towards developing multiscale crop models that span 
multiple levels of biological organization to explore crop adaptation 
and acclimation to a changing climate and genetic engineering strat-
egies for improving crop productivity in current and future climates 
(Marshall-Colon et al. 2017; Peng et al. 2020; Matthews and Marshall-
Colón 2021). Incorporating models of these behaviours will allow us 
to better study emergent properties like photosynthetic acclimation in 
future climate scenarios. Similar to how we developed new modules 

for Soybean-BioCro, new modules can be developed that describe 
other primary and secondary metabolic processes or gene regulatory 
mechanisms. Using model coupling tools, such as the yggdrasil frame-
work (Lang 2019), BioCro modules can also be developed that call 
models outside of the BioCro framework.

In conclusion, this study has shown that by incorporating the 
primary mechanism by which C3 plants respond to rising [CO2], 
Soybean-BioCro successfully predicted growth, partitioning and yield 
responses observed in a field soybean crop, providing a means to pre-
dict beyond experience. The modular nature of this semi-mechanistic 
model now provides a framework that can be extended to incorporate 
secondary effects of growth under future global change conditions 
including feedback effects on photosynthesis, partitioning and pro-
duction (Kannan et al. 2019).

S U P P O RT I N G  I N F O R M AT I O N
The following additional information is available in the online version 
of this article—
Text S1. The equations, parameters and initial values used in 
Soybean-BioCro.
Figure S1. Daily precipitation and predicted soil-water content for 
2002, 2004–06.

Figure 4. Hourly temperature measurements in Urbana, IL during the (A) 2002 and (B–D) 2004–06 soybean growing seasons. 
Temperatures ≤ 15 °C are in black and temperatures ≤10 °C are in blue. The predicted days when the soybean plants are in their 
R1–R3/R4 development stages are highlighted in yellow. (E) Predicted and experimental pod biomass in ambient and elevated 
[CO2] during the 2004 growing season. This is the same plot as Fig. 2J, with the predicted range of the R1–R3/R4 development 
stages highlighted.
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