
The Experimentalist’s Guide to Machine Learning for Small Molecule
Design
Sarah E. Lindley, Yiyang Lu, and Diwakar Shukla*

Cite This: ACS Appl. Bio Mater. 2024, 7, 657−684 Read Online

ACCESS Metrics & More Article Recommendations

ABSTRACT: Initially part of the field of artificial intelligence,
machine learning (ML) has become a booming research area since
branching out into its own field in the 1990s. After three decades of
refinement, ML algorithms have accelerated scientific developments
across a variety of research topics. The field of small molecule design
is no exception, and an increasing number of researchers are applying
ML techniques in their pursuit of discovering, generating, and
optimizing small molecule compounds. The goal of this review is to
provide simple, yet descriptive, explanations of some of the most
commonly utilized ML algorithms in the field of small molecule
design along with those that are highly applicable to an
experimentally focused audience. The algorithms discussed here
span across three ML paradigms: supervised learning, unsupervised
learning, and ensemble methods. Examples from the published literature will be provided for each algorithm. Some common pitfalls
of applying ML to biological and chemical data sets will also be explained, alongside a brief summary of a few more advanced
paradigms, including reinforcement learning and semi-supervised learning.
KEYWORDS: small molecule design, drug design, machine learning, data analysis, QSAR, experimentalist friendly

■ INTRODUCTION
Small molecule design is an arduous process that involves the
identification of the initial lead compound, optimization of its
chemical structure, determination of dosage and off-target
effects, and validation of its efficacy.1−3 Each of these steps is
riddled with experimentally intensive protocols. For the initial
identification, up to tens of thousands of molecular candidates
are required to be experimentally tested against a biological
model.4−7 The model used in this step needs to be easily
scalable while still maintaining high accuracy to the molecule’s
target system. During optimization, many compounds that are
structurally8,9 or mechanistically10,11 similar to the lead
compound are screened on a model system to identify
improved candidates. Dose response experiments are necessary
for pinpointing the optimal dosage, which increases the
amount of experimental efforts required. Improved exper-
imental model systems with enhanced similarity to target
settings (such as plant or animal models), as well as extensive
assays on various aspects of the model, are needed for further
validation of the potency of the candidates and the
identification of potential off-target effects.12−14 Finally,
multiple subsequent trials of increasing scale and scope are
conducted to validate the efficacy and safety of the developed
molecule. This step filters out a large portion of small molecule
candidates, and only a small fraction will be approved by the

relevant government agency such as the Food and Drug
Administration (FDA) or the United States Department of
Agriculture. For example, the number of new molecular entities
(NMEs), drugs with a method of action that is novel to the
FDA, and Biologics, novel therapeutics from a living source,
that have been discovered and approved has remained
relatively stable since the 1980s (Figure 1).15 This stable rate
of discovery is no match for the increasing need for new
therapeutics, as new medical challenges such as Ebola, SARS-
CoV-2, and monkeypox continue to arise and must be
accelerated through the introduction of modern techniques.
In the past, small molecule design required extensive and

time-consuming experimental investigations. Recently, the
continued improvements in computer hardware,16,17 in
combination with advancements in novel computational
algorithms,18 have provided an unprecedented opportunity to
accelerate the development process. Such levels of computing
power have been frequently utilized in computational biology

Special Issue: Computational Advances in Biomaterials

Received: January 19, 2023
Accepted: July 17, 2023
Published: August 3, 2023

Reviewwww.acsabm.org

© 2023 The Authors. Published by
American Chemical Society

657
https://doi.org/10.1021/acsabm.3c00054
ACS Appl. Bio Mater. 2024, 7, 657−684

This article is licensed under CC-BY 4.0

D
ow

nl
oa

de
d

vi
a

U
N

IV
 I

L
L

IN
O

IS
 U

R
B

A
N

A
-C

H
A

M
PA

IG
N

 o
n

A
pr

il
3,

 2
02

4
at

 1
9:

08
:4

9
(U

T
C

).
Se

e
ht

tp
s:

//p
ub

s.
ac

s.
or

g/
sh

ar
in

gg
ui

de
lin

es
 f

or
 o

pt
io

ns
 o

n
ho

w
 to

 le
gi

tim
at

el
y

sh
ar

e
pu

bl
is

he
d

ar
tic

le
s.

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Sarah+E.+Lindley"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Yiyang+Lu"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Diwakar+Shukla"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acsabm.3c00054&ref=pdf
https://pubs.acs.org/doi/10.1021/acsabm.3c00054?ref=pdf
https://pubs.acs.org/doi/10.1021/acsabm.3c00054?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acsabm.3c00054?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acsabm.3c00054?fig=tgr1&ref=pdf
https://pubs.acs.org/toc/aabmcb/7/2?ref=pdf
https://pubs.acs.org/toc/aabmcb/7/2?ref=pdf
https://pubs.acs.org/toc/aabmcb/7/2?ref=pdf
https://pubs.acs.org/toc/aabmcb/7/2?ref=pdf
https://pubs.acs.org/toc/aabmcb/7/2?ref=pdf
https://pubs.acs.org/toc/aabmcb/7/2?ref=pdf
www.acsabm.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acsabm.3c00054?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://www.acsabm.org?ref=pdf
https://www.acsabm.org?ref=pdf
https://acsopenscience.org/researchers/open-access/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

and have been applied to a variety of research areas, ranging
from protein engineering,19−22 drug design and optimiza-
tion,23−25 large-scale modeling of biological systems,26−29 and
clinical diagnostics.30−33 In this review, the applications of
machine learning (ML) algorithms on small molecule design
will be discussed.

■ A BRIEF HISTORY OF SMALL MOLECULE DESIGN
Historically, the field of small molecule design was preceded by
the field of drug development, which relied heavily on
compounds within extracts from naturally occurring sources.
After an extract’s activity is verified, a series of purifications are
needed to narrow down the scope of potential active
constituents until the active compound is identified.34 Such
constituents, termed lead compounds, are usually difficult to
purify, may be available only in small quantities with an unclear
mechanism of action, and may be structurally complicated.
Penicillin, one of the most famous antibiotics, was initially
discovered by Alexander Fleming as a crude extract from the
mold P. rubens. The effectiveness of the extract was
demonstrated in his publication in 1929,35 but the purified
compound was not isolated until 1940,36 which exemplifies the
inherent difficulty of utilizing extracts from natural sources for
drug development.
In the past few decades, the rapidly developing fields of

chemistry and biology have given rise to methodologies to
generate drug candidates without the use of biological extracts.
These techniques resulted in the emergent field of small
molecule design and increased the rate of compound testing in
the pharmaceutical industry, while time consumption and labor
costs remained relatively low. In 1992, the first combinatori-
cally generated small molecule compound library was
reported.37 The library was synthesized by the rapid assembly
of various functional groups onto a small molecule scaffold,
creating a library of derivative compounds from the given
scaffold.37 Following that, many small molecule libraries of
compounds based on scaffolds were generated and tested,38,39

and many research groups focused on scaffolds that showed

activity toward multiple biological targets, termed privileged
scaffolds, for their research.40,41

Even though the rapid synthesis of scaffold-based compound
libraries is many orders of magnitude faster than isolating and
purifying active components from extracts in nature, the
process of small molecule design still suffers from the large
amount of time and effort needed to test the synthesized
compounds, which limits the rate of discovery. Recent decades
have seen major improvements in ML theories and algorithms,
and these methods have been increasingly and widely used in
the context of molecular design. In short, the goal of ML is to
develop algorithms that incorporate existing data into a
suitable model to predict unobserved results. In the context
of small molecule design, ML algorithms have the potential to
learn from existing chemical and biological data sets to predict
the activities of untested compounds. ML originated in the
field of artificial intelligence before branching off and
flourishing in the 1990s.42 Since then, a great many algorithms
have emerged from the enormous efforts of researchers
worldwide. These algorithms range from the simple linear
regression, where a linear functional fit is constructed for a
given data set,43,44 to the highly complicated and nonlinear
deep neural network, which contains tens to hundreds of basic
calculation units called neurons that communicate among each
other to predict an output.44,45 These ML algorithms can a)
learn from the structure and effects of compounds reported in
literature and generate new candidates for testing, b) utilize
previously trained models from past research to adapt to a new
problem with a small amount of available data, and c) predict
the effect of molecules from an untested library to allow for
prioritization during the testing procedure.46−49 There are four
widely applicable approaches to ML: supervised learning,
unsupervised learning, reinforcement learning, and artificial
neural networks. Supervised learning requires data sets
containing both features (or independent variables) and labels
(or dependent variables). It aims to develop a model that best
fits the relationship of the features and labels, and then use that
model to predict labels from new features (Figure 2A). These
methods are well-suited for molecular design tasks where
abundant data with high quality annotations exist and can
provide reliable guidelines and suggestions to potential hit
compounds. Unsupervised learning only requires labels to
function, and it aims to uncover a clustering (or grouping) or a
distribution of the features (Figure 2B). These methods are
most applicable to situations where large-scale data sets exist
for the molecular design target, but few to no annotations can
be found. They will provide a quick and easy way of
categorizing unlabeled data. Reinforcement learning tackles
tasks that require exploration of a well-defined environment by
iteratively carrying out actions and receiving feedback from the
environment in the form of increases or decreases in score.
The algorithm then adjusts its next action according to the
score it receives. For example, if the goal is to design an
inhibitor based on a chemical scaffold, then modifications of
the scaffold that result in inhibition will result in an increased
score, with similar modifications being more likely to be
repeated. On the other hand, modifications that result in
activation will result in a decreased score, and similar
modifications are less likely to be repeated (Figure 2C).
Reinforcement learning is uniquely suitable for design tasks
where large-scale data sets are unavailable, but a general
chemical space for exploration can be deduced from past
research. It can provide a stepwise approach to designing

Figure 1. Amount of new molecular entities (NMEs) and new
biologics approved by US Food and Drug Administration each year,
1980−2021. Blue dots represent raw data, and the black line
represents the best linear fit to the data. The resulting linear fit shows
a gradual increase in number of approved NMEs and new biologicals
every year, but with low statistical significance (r2 = 0.2071). Data
obtained from US Food and Drug Administration.15

ACS Applied Bio Materials www.acsabm.org Review

https://doi.org/10.1021/acsabm.3c00054
ACS Appl. Bio Mater. 2024, 7, 657−684

658

https://pubs.acs.org/doi/10.1021/acsabm.3c00054?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsabm.3c00054?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsabm.3c00054?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsabm.3c00054?fig=fig1&ref=pdf
www.acsabm.org?ref=pdf
https://doi.org/10.1021/acsabm.3c00054?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

molecules with desired properties. Finally, the artificial neural
network mimics the structure of biological neurons to extract
information from input data. It consists of multiple layers of
basic calculation units called neurons, which calculate a

weighted sum of all the outputs from the neurons in the
previous layer and send the sum as its own output to the
neurons in the next layer. A typical ANN consists of an input
layer, several hidden layers (3 pictured in Figure 2D), and an

Figure 2. Four widely applicable types of machine learning algorithms. (A) Supervised learning attempt to learn the relationship between existing
features and labels by training a model (left). After training, the model is used to predict labels for a new set of unlabeled features. (B)
Unsupervised learning aims to infer useful information from features only. The output of unsupervised learning is usually in the form of grouping/
clusters or distributions. (C) Reinforcement learning, instead of attempting to directly learn from existing data sets, aims to explore a well-defined
environment. It takes iterative actions in the environment, and in turn the environment provides feedback about if the action is desirable or not.
The algorithm then adjusts its next action according to past feedback, and the cycle continues. (D) An artificial neural network (ANN) is structured
in a layered fashion. Each layer contains a number of basic calculation units called neurons (circles), which calculates a weighted sum of all the
outputs from the neurons in the previous layer, and sends the sum as its own output to the neurons in the next layer. A typical ANN consists of an
input layer, a number of hidden layers (3 pictured), and an output layer.

ACS Applied Bio Materials www.acsabm.org Review

https://doi.org/10.1021/acsabm.3c00054
ACS Appl. Bio Mater. 2024, 7, 657−684

659

https://pubs.acs.org/doi/10.1021/acsabm.3c00054?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsabm.3c00054?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsabm.3c00054?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsabm.3c00054?fig=fig2&ref=pdf
www.acsabm.org?ref=pdf
https://doi.org/10.1021/acsabm.3c00054?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

output layer (Figure 2D). ANN provides a generalizable
structure for many machine learning tasks, but its strength lies
in its ability to handle extremely large data sets. Thus, ANN is
highly suitable for molecular design tasks where data sets from
large scale high-throughput experiments are involved. In the
following sections, simple, yet commonly utilized, ML
algorithms will be introduced, and their advantages and
weaknesses will be discussed. Three categories of ML
algorithms will be covered: supervised learning, unsupervised
learning, and advanced methods. The algorithms addressed
within these categories were selected due to their applicability
to small molecule discovery.

■ DATA PROCESSING
Prior to delving into various ML models and approaches, one
must understand the types of data available as well as the types
that are necessary for each ML model to function properly.
This section will provide background information and
terminology to provide an adequate understanding of key
concepts before proceeding further.
Types of Data. Perhaps the most basic concept to define is

the independent vs the dependent variable. The independent
variable is the factor that you, as the researcher, manipulate to
determine their effect on the dependent variable. In ML
contexts, these are frequently referred to as the features of your
data set. The dependent variable is the output, often collected
from experimental results, termed "labels" in ML contexts. The
data for these two types of variables can take many forms
depending on the subject studied and the needs and structure
of the experiment. These data can be broken down into
quantitative and qualitative data. Quantitative data are data
that can be expressed in some numerical form, which can
typically be broken down into two categories: continuous and
discrete. Continuous data can take the form of any number or
portion of a number. These data often represent things that are
measurable to a high level of precision such as concentration,
length, time, volume, etc. In contrast, discrete data must be in
the form of whole numbers or integers and are often seen as
things that can be counted such as the number of individuals,
items, molecules, functional groups, etc. Qualitative data, on
the other hand, deal with things that can only be roughly
measured and frequently expressed with categorical labels. This
data type can be further divided into two categories: nominal
and ordinal. Nominal data deal with information such as
gender, religion, nationality, etc. They can be represented as
numbers by assigning a unique integer to each of the types
(such as types of beverages), but the numbers are not
understood as an indication of relative quality or ranking. In
contrast, ordinal data deal with information that has an order
as an integral part of its identity; examples can be seen in
grades, military ranks, or satisfaction ratings. Ordinal data can
take a numerical form, but the numbers are only in relation to
the ranking between the different values of the same feature
and cannot be interpreted in comparison to values of a
different feature. For example, if numbers are assigned to
grades from the lowest to the highest (F - 1, D - 2, C - 3, B - 4,
A - 5), then a grade of 4 is better than a grade of 2. However, a
grade of 4 cannot be compared to a satisfaction rating of 4,
because the two numbers are not derived from the same set of
ordinal data.
Data Cleaning and Wrangling. Large chemical and

biological data sets obtained from experiments commonly
suffer from mistakes due to both instrumental and human

errors. Some common forms of errors include missing values,
duplicate entries, and outliers. It is crucial to examine and
curate your input data set before feeding it into your ML
algorithm of choice because any error in it will be picked up
and learned by the algorithm, which will most likely cause a
significant derailment in the performance of the algorithm.50

Though it would be extremely difficult and time-consuming to
identify every error manually, it would be comparatively easy
and expedient to write a simple program to iterate through the
whole data set and check for potential problems, prompting for
human input only if necessary. Missing values can be easy to
identify but can be tricky to deal with depending on their
prevalence in your data set. The simplest method to correct for
missing values is to delete the variables or observations with
them. However, when missing values are highly prevalent in
the entire data set, deleting variables or observations may end
up removing most of the data. An alternative method is to
substitute missing values with estimations. The simplest
estimation is the average of all existing values of the same
variable.50 If there are other correlated variables in the data set,
linear regressions can be utilized to provide an estimate of the
missing values as well.50 Duplicate entries are generally easy to
resolve by simply removing them but can prove challenging to
identify. While exact duplicates do exist, in biological and
chemical data sets, they manifest more frequently as extremely
similar entries or entries with duplicated values in a select few
variables.50 Highly similar entries are usually the result of
unintentionally duplicated experiments. However, due to the
inherent randomness of chemical and biological processes,
distinct experiments can also yield similar results. Thus, when
correcting these entries, it is crucial to ensure that the
experiments producing these entries are actual duplicates. This
can be done by checking various aspects of the entries,
including the chemical identifiers, experimental conditions, cell
line identifiers, etc. Entries with duplicated values in some but
not all variables require extra caution. Each duplicated value
needs to be manually evaluated with expert knowledge to
determine to which entry the value truly belongs to. For the
other entries with duplicated values, they should be assumed to
be missing in these values and amended accordingly using the
methods mentioned above for missing values. In the case
where manual evaluation cannot determine to which entry the
duplicated value belongs, it may be beneficial to simply remove
all entries affected by the duplication. Finally, outlier entries
can generally be picked out through data visualization. One
common method is to create a scatter plot of the variables that
you wish to examine. Then outlier values can be picked out
through a visual examination of the distance between data
points. In a similar manner, histograms are another helpful
form of visualization for discerning outlier values. After
identification, outlier values can be treated as missing values
and dealt with using the aforementioned methods.
Data wrangling, sometimes also called data curation, refers

to the process of improving existing data by correcting
mistakes and merging data sets from different sources.51 Data
cleaning covers the error correction part of the overarching
data wrangling process and is arguably the most important part
as well. When it comes to merging data sets, there are two
major challenges. The first challenge is the lack of universal
formatting. This can manifest as inconsistencies in the units or
representations of similar variables. The second challenge is
the potential lack of direct quantification. For example,
suppose we apply machine learning on two sets of chemicals

ACS Applied Bio Materials www.acsabm.org Review

https://doi.org/10.1021/acsabm.3c00054
ACS Appl. Bio Mater. 2024, 7, 657−684

660

www.acsabm.org?ref=pdf
https://doi.org/10.1021/acsabm.3c00054?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

to tease out the relationship between their functional group
composition and their solubility. One data set records the
solubility in mass per volume (e.g., g/L), while the other uses
molarity (e.g., mM). This is a case of a lack of universal
formatting. To convert between the two units, the molecular
weight is needed for each compound, which can be derived
from structural information. When it comes to functional
group composition, neither set of data provides the
information directly. Instead, the chemical structures are
represented with SMILES strings. This represents a lack of
direct quantification. To obtain the functional group
compositions, the SMILES strings need to be parsed with
specialized programs or web tools to extract and quantify
relevant structural information. Finally, the data can be merged
once all relevant variables from both sets of data are quantified
and represented in a uniform fashion. The merging process is
simple. Concatenating one data set with another is usually
sufficient. In the case where the ML algorithm may be sensitive
to the order of the data, the concatenated set can then be
scrambled to prevent the algorithm from learning the

differences between the original data sets, instead of the
differences between chemical compounds.
Data Featurization. Now that different data types have

been discussed, we can look at ways to acquire and process
those data in order to make them usable for your ML model of
interest. The process for acquiring usable data through
converting non-numerical data into a numerical form is called
data featurization. Chemical and biological data are not always
presented as numbers, and since ML algorithms can only
handle numbers as inputs, featurization is a necessary step
before ML algorithms can be applied. These include chemical
structures, DNA sequences, amino acid sequences, protein
structures, protein−protein and protein−gene interactions, and
so on. For chemical structures, the number of key functional
groups can be counted and converted to a series of numbers
with each number representing the number of a specific
functional group. In addition, if certain numerical structural
features, such as distance between atoms, bond angles, charges
of atoms, etc., are of great importance to a prediction task, they
can be directly included as input features as well.52 For DNA
and amino acid sequences, since there are only a limited

Figure 3. A general guideline to what type of machine learning algorithm to choose. Two things need to be considered: if the data set is labeled,
and how complex is the data set. For complex data sets, advanced methods are usually preferable. For data sets with low complexity, if the data set is
labeled, then supervised learning can be applied. If the data set is unlabeled, then unsupervised learning is applicable. Finally, each of the algorithms
within the three categories has its own most suitable case, and the details can be found at the bottom of the figure.

ACS Applied Bio Materials www.acsabm.org Review

https://doi.org/10.1021/acsabm.3c00054
ACS Appl. Bio Mater. 2024, 7, 657−684

661

https://pubs.acs.org/doi/10.1021/acsabm.3c00054?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsabm.3c00054?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsabm.3c00054?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsabm.3c00054?fig=fig3&ref=pdf
www.acsabm.org?ref=pdf
https://doi.org/10.1021/acsabm.3c00054?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

number of types of nucleotides and amino acids, they can be
encoded as arrays of numbers to convert the sequence into
numerical entries. For molecular interactions, logical true or
false features or Boolean features denoting whether a pair of
molecules is interacting can be concatenated to the list of input
features. Distances between key atoms and functional groups
belonging to different molecules can also be included as a
feature when it comes to interactions.52 A popular framework
for integrating chemical and biological information into ML is
the so-called quantitative structure−activity relationship
(QSAR). QSAR describes a general procedure for applying
ML algorithms to experimental data and provides multiple
methods to effectively select the relevant independent variables
and convert them to numeric values.53

After featurization, the numerical representations of
chemical and biological data can be further processed. A
common procedure for refining data sets is called binning. It
averages similar data points into single points, which reduces
the overall noise in the data set. For example, when an image is
converted into usable data, binning can be employed to reduce
the amount of excess information and emphasize useful
features of the image for the model. Specifically, image binning
is accomplished by reducing the overall number of pixels by
combining nearby pixels into a single pixel. In essence, this
puts all of the data from pixels within a certain range into a
singular bin and returns a single value. This has the benefit of
reducing the overall noise in an image and ensuring that the
model is trained only on the important parts when attempting
to recognize a particular object or idea. Zhou described it well
when he compared this process to attempting to train a model
to recognize a leaf.54 If the only images shown to the machine
are of leaves with serrated edges, the model could mistakenly
believe that a true leaf is only one with serrated edges. This
problem would be known as overfitting and will be discussed in
more depth later on. Binning creates an elegant solution to this
problem by decreasing the overall resolution of the image to a
degree where it is still recognizable but any bias that has been
accidentally introduced will be averaged out and go unnoticed

by the model such as the serrated edges. Another way to think
about this is in terms of controlling for extraneous variables in
an experimental setup. Extraneous variables are any variables
that you are not intending to research but can influence your
dependent variable. As a result, these variables must be
controlled to understand the true effect of the independent
variable on the dependent variable; otherwise, false positive or
negative results could afflict the outcome of your experiment.
An additional concept worth discussing for understanding

how to process your data set is dimensionality. Dimensionality,
or the number of dimensions, is a concept that most people are
familiar with, even if it seems foreign in a mathematical sense.
Dimensions are typically thought of in terms of physical space.
For example, a cube has three dimensions as it contains length,
width, and depth. In the same way, data can be visualized with
a variety of dimensions. In its simplest form, the number of
dimensions in your data set can be visualized by the number of
axes on your graphical representation of your data or, in other
words, the number of independent variables or features that
you are analyzing. For example, a chemical data set represented
with molecular weight, melting point, and number of aromatic
rings has three dimensions. While a higher dimensionality will
result in a more comprehensive representation of your data set,
many ML models function best with a particular range of
dimensions and may not function well or at all if the number of
dimensions is outside that range. Additionally, even if the
algorithm is capable of processing higher-dimensional data, the
amount of computational time required may be so high that it
renders the endeavor unviable.
When it comes to picking a suitable ML algorithm, the

composition of your featurized data set is crucial. For a data set
containing both features and labels, supervised learning is
suitable for the task (Figure 3, left). For data sets with only
features, unsupervised learning is capable of extracting
information from them (Figure 3, right). For highly complex
data sets, basic supervised or unsupervised learning algorithm
would not be sufficient, and advanced methods are most suited
for such tasks (Figure 3, middle).

Figure 4. An example of data normalization using the standard score method. (A) For chemical and biological data, it is common when two
features span across completely different numerical values. For example, a set of molecules may span across 150−850 Da in molecular weights, but
only spanning 5−150 nM when their binding affinity to a target of interest is considered. ML algorithms do not inherently take units into
consideration, which results in increased difficulty in discerning differences in binding affinities compared to molecular weights. (B) By using the
standard score method, both binding affinity and molecular weight are normalized to a mean of 0 and a standard deviation of 1. Thus, the
normalized values for both features now fall in between −2−2. By applying ML algorithms to the normalized values, both features will be equally
prioritized.

ACS Applied Bio Materials www.acsabm.org Review

https://doi.org/10.1021/acsabm.3c00054
ACS Appl. Bio Mater. 2024, 7, 657−684

662

https://pubs.acs.org/doi/10.1021/acsabm.3c00054?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsabm.3c00054?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsabm.3c00054?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsabm.3c00054?fig=fig4&ref=pdf
www.acsabm.org?ref=pdf
https://doi.org/10.1021/acsabm.3c00054?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

Data Normalization. Chemical and biological data span a
wide range of magnitudes depending on the type of data. For
example, the binding affinity of an enzyme to its substrate can
be on the order of 1−100 nM, the bond angle of a specific pair
of bonds can only take values between 0−360°, and the
molecular weight of a molecule can go from 100 Da for small
chemicals to over 10 000 Da for small proteins. Since most ML
algorithms are only designed to handle raw numbers, the units
and relative magnitudes between different types of data will be
lost. In ML, the most common metric used to quantify the
performance is in the form of the sum of the prediction errors.
For example, if an ML algorithm is tasked to predict molecules
with molecular weights of ∼500 Da as well as binding affinities
of ∼50 nM, then the same 1% error rate would mean a ± 5 Da
and a ± 0.5 nM difference, respectively. However, the
algorithm sees only values 5 and 0.5. Since the goal of ML is
to minimize its prediction error, the algorithm will be more
likely to further reduce the error rate with respect to the
molecular weight rather than the error rate with respect to the
binding affinity. This may result in an undesired prioritization
of one feature over another.
To solve this problem, a technique called data normalization

can be applied. The goal of data normalization is to rescale all
variables into similar ranges so that the prediction errors will
be on the same scale and thus be treated with equal
importance by the ML algorithm. The most common
normalization technique is called a standard score. It
normalizes a given data set to have a mean of 0 and a
standard deviation of 1. To carry out the normalization, the
following equation can be applied to each feature:

X
Normalized value =

In the equation, X is the raw value of a data point, μ is the
mean of the full data set, and σ is the standard deviation of the
full data set. Another way to understand how normalization

equalizes the importance of each feature is that it equalizes the
distance between data points such that the similarities between
data points are uniform across different features. As an
example, suppose we have a data set of molecules weighing
150−850 Da, and their binding affinities to a target of interest
range from 5−150 nM. Since ML algorithms treat them as raw
numbers without units, the resulting scatter plot of this data set
will look like Figure 4A, where the differences in binding
affinities are much less prominent than those in molecular
weights. After the standard score method is applied (Figure
4B), both molecular weights and binding affinities are
standardized to between −2 and 2, enabling the ML algorithms
to equally prioritize both features.
Data normalization has been proven to be one of the key

steps in successfully applying ML algorithms to experimental
data and can bridge the gap between data sets obtained using
different technologies by rescaling them into the same
range.55,56 Although some ML algorithms are capable of
handling non-normalized data (an example being the decision
tree algorithm), it is standard practice to normalize your data
to avoid potential degradation in performance.
Kernel Method. Many ML algorithms are designed to

distinguish data points with large differences or, in other
words, large distances between one another. They may
perform poorly when two different categories of data points
are too close to each other. However, due to the inherent
randomness of biological and chemical processes, data
produced by experiments may not present clear-cut boundaries
between different types of data points. This would potentially
hinder the learning processes of ML algorithms, even after
proper data normalization. For example, chemicals derived
from the same scaffold molecule may possess high structural
similarities, but their biological activities can vary significantly
from antagonistic to agonistic interactions. Similarly, many
biological processes such as bacterial growth, receptor−ligand
binding, and clearance rate of drugs are commonly used to

Figure 5. A simple application of the kernel method. (A) The raw data set consists of a binary label of melatonin level over a period of 24 h,
corresponding to the amount of time spent in a day. The best singular straight cut of the data set to separate high melatonin points from low
melatonin points is shown as a dashed vertical line, which results in a total of 7 mistakes (1 blue, 6 red). (B) A new 2D representation of the data
set after the kernel method is applied. Combining the prior knowledge that blood melatonin level varies over the course of the day according to the
circadian rhythm, and that melatonin level peaks around 3 AM, an artificial feature can be added by constructing a sinusoidal function with a period
of 24 h and a peak at t = 3 h, and plugging the time values into the function. The new feature is plotted on the Y axis. With the new representation,
the best singular straight cut to separate high melatonin levels from low levels is shown as the slanted dashed line. In this scenario, the best cut
resulted in only 1 mistake (1 blue), which is a sharp decrease from the 7 mistakes in the previous panel.

ACS Applied Bio Materials www.acsabm.org Review

https://doi.org/10.1021/acsabm.3c00054
ACS Appl. Bio Mater. 2024, 7, 657−684

663

https://pubs.acs.org/doi/10.1021/acsabm.3c00054?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsabm.3c00054?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsabm.3c00054?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsabm.3c00054?fig=fig5&ref=pdf
www.acsabm.org?ref=pdf
https://doi.org/10.1021/acsabm.3c00054?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

gauge the effectiveness of therapeutics, but data recorded from
these processes are often riddled with noise and uncertainties.
One way to tackle this problem is to construct artificial

features using functions or combinations of existing features to
amplify the distance between crucial data points. Take
melatonin levels as an example. Assume that we have a set
of measurements of melatonin levels from an individual over
the course of a day (Figure 5A). The measurements are
classified as either high melatonin or low melatonin. Our goal
here is to separate the data points into two groups with a
singular, straight cut so that ideally one group will only contain
points with high melatonin and the other only points with low
melatonin. If we attempt to partition the data as is, then the
best attempt we can make (dashed line, Figure 5A) will result
in a total of 7 misclassified points, with 1 low melatonin point
misclassified into the high melatonin group (near t = 7 h), and
6 high melatonin points misclassified into the low melatonin
group (for t > 21 h). However, the performance could be
improved. According to past research, blood melatonin levels
are dependent on the circadian rhythm, with a period close to
24 h. These levels also peak at around 3:00 AM (or t = 3 h)
and dip during the day, resembling a sinusoidal function. Thus,
we can construct an artificial feature with a sinusoidal function
with a period of 24 h and a peak at t = 3 h to incorporate the
periodic nature of blood melatonin levels. Mathematically, this
sinusoidal function is represented as ()tsin (3)

12
+ . By

plugging the time into the sinusoidal function, the artificial
feature (plotted on the Y axis in Figure 5B) amplifies the
distance between data points around t = 8 h and t = 20 h that
are crucial for accurately separating the high melatonin points
and the low melatonin points. Now, if we attempt to classify
the data again, we can easily separate the data in a linear
fashion (dashed line, Figure 5B), with only one low melatonin
point misclassified as the high melatonin group. The act of
introducing artificial features that are functions or combina-
tions of existing features is called the kernel method.57

Since the goal of introducing artificial features is to increase
the distance between data points, it has been proven
mathematically that this process is equivalent to using a
custom-made function to calculate the distance. The distance
function used in ML algorithms is commonly called the kernel
function. The most intuitive function is the Euclidean distance
function, which is defined as

d X Y x y(,) ()
i

n

i iE
1

2=
=

In this equation, dE(X,Y) is the Euclidean distance between
points X and Y, xi and yi represent the ith feature of X and Y,
and n is the number of different types of features in the data
set. The Euclidean distance is intuitive in that it coincides with
our sense of distance in the physical world, but when it comes
to ML, the Euclidean distance does not always provide the
largest distinction between data points. Another widely applied
kernel function is called the radial basis function (RBF) kernel.
It is defined as follows:

K X Y e(,) d X Y
RBF

(,)E
2

=

In this equation, KRBF(X,Y) is the value calculated by the
RBF kernel, e is Euler’s number, γ is a free positive parameter,
and dE(X,Y) is the Euclidean distance between points X and Y.
The parameter γ determines how fast KRBF decays as the

dE(X,Y) increases. Due to the presence of an exponential
function and a nonpositive exponent, the RBF kernel always
returns a number between 0 and 1, reaching 1 when X is
identical to Y, and decreasing in value as the Euclidean distance
between X and Y increases. In this sense, KRBF is a
measurement of the similarity between two given points. The
limited range of the function output also simplifies the
calculation in downstream ML algorithms.
To determine the type of kernel to use, prior knowledge on

the field of study or observations on the data set needs to be
obtained. Additional kernel functions to the Euclidian distance
function and the radial basis function include the polynomial
kernel, sigmoid kernel, and Gaussian kernel. The details of
these functions are out of the scope of this review, but another
review written by Vert and Jacob covers kernel methods in
more detail.58

Small or Biased Data Sets. Chemical and biological data
are inherently difficult to acquire due to the high complexity
and low scalability of the experiments. In addition, when
screening for biological activities, the hit rate for library-based
screens is typically low, sometimes even less than 1%. Thus, it
is a common occurrence when applying ML to these data sets
that there are simply not enough positive data points to
efficiently train an unbiased model. As ML has developed
through the past decades, algorithms specializing in data-scarce
regimes have come to exist, which include one-shot learning
and transfer learning. However, there is a much simpler
solution to this problem: a statistical technique called
bootstrapping. Bootstrapping treats the input data set as a
new population and repeatedly samples it randomly with
replacement to generate a new data set. For example, for an
input data set of 3 elements denoted as the set {x1,x2,x3}, a
bootstrap with 2 elements per sample and 5 total samples can
be {x1,x2}, {x2,x3}, {x2,x2}, {x2,x3}, {x3,x3}. This results in a
new data set with more data points than the original data set,
while ensuring the new data set still conforms to the
distribution of the true population where the original data
set comes from. Bootstrapping can be applied to any ML
algorithm when the input data set is too small or too biased to
obtain a meaningful model.
An example of bootstrapping can be found in the following

research on the side effects of various drugs on heart function,
conducted by Sun et al.59 The authors generated a support
vector machine (SVM, discussed in greater detail in later
sections) model to predict whether a given drug will inhibit the
potassium ion channel protein encoded by the human ether-a-̀
go-go-related gene (hERG). Inhibition of hERG can cause
arrhythmia that can be life threatening, and such inhibition has
been the cause of the withdrawal of many extremely popular
and promising drugs in the past. The authors utilized a high
throughput screening modality to generate a labeled data set of
3,024 compounds. However, only ∼16% were identified as
hERG blockers, resulting in a significant bias against hERG
blocking activities. To compensate for such bias, the authors
constructed 5 sets of bootstrapped data, with each containing
10, 20, 30, 40, or 50 random subsets of the majority class
(drugs that do not block hERG). For each subset, the number
of samples is equal to the number of data points of the
minority class (hERG blockers). The resulting models
achieved high performance, quantified by a high true positive
rate together with a low false positive rate. The authors also
note that significant improvement in performance was seen
when comparing the 20-subset bootstrapped data set to the 10-

ACS Applied Bio Materials www.acsabm.org Review

https://doi.org/10.1021/acsabm.3c00054
ACS Appl. Bio Mater. 2024, 7, 657−684

664

www.acsabm.org?ref=pdf
https://doi.org/10.1021/acsabm.3c00054?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

subset one, but no significant improvements were seen
comparing the bootstrapped data set with 20−40 subsets.
Now that we have discussed the properties of your potential

data sets, we can move on to discuss the ML models that will
assist in analyzing and forming predictions from that data.

■ SUPERVISED LEARNING
The task of supervised ML algorithms is to construct a
mathematical model to infer a relationship between the
features (or inputs, including but not limited to the chemical
structure of a compound, its molecular weight, functional
group composition, and similarity to known compounds) and
the labels (or outputs, such as activity against a protein of
interest, inhibition or promotion of cell growth, side effects on
bystander cells, etc.).60 This process is commonly referred to
as training. The model’s performance is then tested using a
separate data set, containing both features and labels, that was
not utilized in the training process. Due to the difficulty of
obtaining multiple data sets, a common practice is to split one
data set into a training set and a testing set. Finally, the model
is applied to data with only features to predict their labels. This
process is called supervised learning because it requires
prelabeled data, most likely labeled by humans, to conduct
the training process. Supervised learning algorithms are
capable of both regression (predicting a continuous variable)
and classification (predicting a discrete variable).60 In this
section, seven supervised learning algorithms widely used in
small molecule development are introduced, each with its own
advantages and disadvantages.
Linear Regression. Linear regression is one of the most

basic supervised learning algorithms. In its simplest form, linear
regression seeks to find the relationship between the
independent variable and the dependent variable. It accom-
plishes this by plotting the points associated with the variables
before finding a straight line that approximates the points. The
line can then be quantified by a linear equation. Linear
regression is most commonly used for quantitative variables,
either continuous or discrete. If either the independent variable
or the dependent variable is qualitative, linear regression can
still be performed by assigning numerical values to the
categories, but its performance tends to be lower than that of
other algorithms designed to handle qualitative data. Because
of its simplicity and approachability, linear regression has been
applied across a wide variety of fields and serves as the first-line
method for interpreting data sets.
In ML contexts, the linear regression model uses a linear

combination of all of the input features to approximate the
labels. It most commonly utilizes the method of least-squares
to find the best linear equation that fits the data. In other
words, it attempts to minimize the sum of the squared
distances from the training data to the linear equation, which
represents the error of the chosen line. This function is termed
the loss function, as it represents the amount of information
that will be lost if the training data are replaced by the linear
equation. This form of linear regression was first used by the
French mathematician Adrien-Marie Legendre and German
mathematician Carl Friedrich Gauss in the early 1800s to
predict planetary movements61 and has seen extensive
developments in the two centuries that followed. A closed-
form solution, i.e. a deterministic formula, for the parameters
of linear regressions with any number of features, was
developed some 200 years ago, but the practicality of the
solution to real-world data is questionable because its

computational complexity increases exponentially as more
features are included.62 An alternative method, called gradient
descent, gradually changes the parameter in a stepwise manner,
such that the loss function continues to decrease for each step.
Gradient descent requires much less computational power than
computing the closed-form solution when it comes to large
data sets. However, it may result in solutions that are optimal
when compared to similar ones (i.e., a “local” optimum) but
suboptimal when compared against all possible solutions (i.e.,
failing to find the “global” optimum). This can be circum-
vented by running multiple rounds of gradient descent with
randomized initial parameters and selecting the result with the
minimum loss.62

With the computational power available today, linear
regressions are easy to perform and can be used as a quick
and simple method to verify dependencies between labels and
features. The fact that only linear dependencies can be
assumed means the results of linear regressions are easy to
interpret.63 However, it is also limited by the same assumption,
in that it cannot readily generalize to complex data sets that
cannot be approximated as a linear function. To remedy this
shortcoming, the kernel method can be applied to provide an
extension to nonlinear relationships.
An example of linear regression can be seen in the 2021

study by Janairo et al., in which they utilized a multiple linear
regression (MLR) model to predict the binding free energy of
potential protease inhibitors of SARS-CoV-2.64 MLR is a
simple combination of multiple regular linear regression
models. It predicts multiple labels using the same set of
features. The researchers compared MLR to a variety of other
model types to answer this question but found that MLR
outperformed these other models, despite being the simplest
model. The MLR model in this study was able to avoid
overfitting and was the most consistent of the models tested, as
it showed a significantly better fit of the data to the model
(quantified by the correlation coefficient, or r2 value) and a
much lower prediction error (quantified by root−mean−
square error, or RMSE). The authors also valued the
interpretability of the MLR model compared to the other
methods, as MLR allows for a greater understanding and
explainability of the internal methodology used by the model
when compared to other model types that may utilize a more
“black box” approach. This resultant model was able to predict
the binding affinity of the potential protease inhibitors with
greater than 70% accuracy and was validated using molecular
docking. This study shows the utility of MLR models and
highlights the importance of avoiding the assumption that a
more complex model is guaranteed to perform better on a
given data set. Additionally, experiments such as this could
help reduce the number of compounds for experimental testing
and propel the discovery of therapeutic molecules forward by
eliminating a large number of compounds by testing them in
silico prior to experimental testing.
Logistic Regression. Logistic regression is a model that,

like linear regression, seeks to find relationships between
variables and make predictions from the observed relation-
ships. However, instead of requiring those relationships to be
linear, a logistic (sigmoid) model is used. Since the sigmoid
function produces any number bounded between 0 and 1, the
resulting prediction can be interpreted either as a continuous
label or the probability of a discrete label. This allows the
model to handle data that is not continuous, and as a result,
logistic regression is quite adept at handling qualitative data.

ACS Applied Bio Materials www.acsabm.org Review

https://doi.org/10.1021/acsabm.3c00054
ACS Appl. Bio Mater. 2024, 7, 657−684

665

www.acsabm.org?ref=pdf
https://doi.org/10.1021/acsabm.3c00054?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

The independent variable can be either qualitative or
quantitative, but the dependent variable must be qualitative
for the model to function properly. As a result, it is possible for
the dependent variable to be made of binary, nominal, or
ordinal data. However, one should avoid attempting to fit a
data set that is too small or made up of more features than data
points, as this will result in a very poor predictive ability.
Many aspects of the training process of logistic regression

remain the same as linear regression, including the use of the
sum of squared distances as the loss function and gradient
descent as a tool to minimize the loss function. Unlike linear
functions, sigmoid functions are nonlinear by nature. Since
sigmoid functions appear frequently in biological contexts,
such as dose response, cell proliferation with limited nutrients,
and ligand/receptor binding kinetics, logistic regression has
proven to be useful in the field of small molecule design. In
these scenarios, logistic regression can be readily applied and
the results easily interpreted. In addition to these applications,
the fact that the sigmoid curve spans only between 0 and 1
allows for its alternative interpretation as a probability. The
most common application of this interpretation is to model the

log-odds of observing a label, defined as ()ln p
p1
, where p

represents the probability of observing said label. Thus, logistic
regression can also be applied to classification tasks where
discrete, categorical, or qualitative labels are predicted in
addition to traditional regression tasks that output continuous
labels. Finally, like linear regression, logistic regression is
computationally light and easy to calculate and is well suited
for initial investigations of data sets. However, since not all
nonlinear relationships follow the sigmoidal function, it is
always preferable to first manually check if the data follow a
sigmoidal function and then apply logistic regression.
An example of logistic regression can be seen in the 2014

paper by Gfeller et al., in which the researchers apply a logistic
regression model to assess the bioactivity of small molecules
from their structures.65 The categorical nature of structural
data makes logistic regression an ideal choice for this kind of
problem. The authors based their model on the similarity of a
query molecule to those within the training data set, which is
assessed through the comparison of their molecular finger-
prints and 3D spatial structures. The model is publicly
accessible and can be utilized by researchers to prescreen
potential bioactive molecules, thus saving valuable time and
costs on experimental screening. This tool is called
SwissTargetPrediction, and it is uniquely capable of taking
into account both the 2D and 3D structures of the target
molecules. These structures are assessed using logistic
regression to return a prediction of the bioactivity for that
molecule. The model was recently updated in 2019 by Daina et
al., and it was capable of predicting at least 1 correct target
molecule among the top 15 predictions for over 70% of the
compounds tested with this model.66

Support Vector Machine (SVM). A support vector
machine (SVM) is a model that discerns the relationship of
a number of independent variables to a dependent variable.
These variables can be made up of qualitative or quantitative
data that are either discrete or continuous. As a result, it is
capable of being utilized for either classification or regression
problems, which makes it a versatile tool.67 However, the
utility of SVM is limited by its inability to handle exceptionally
large data sets or those with a great deal of overlap between
features. Since SVM is more commonly used for classification

problems, the inner workings of SVM for classification will be
expanded upon in this section.
For classification tasks, SVM utilizes an algorithm to

generate a hyperplane to separate the data into two categories.
This process is akin to slicing a pizza with two toppings on
different sides into two parts while minimizing the crossover of
the toppings. A hyperplane is a linear object that serves to
extend 2D lines and 3D planes to higher dimensions. This
hyperplane divides the space occupied by the input features
into two sides and is generated by minimizing the amount of
crossover of the two labels according to the training data. After
training, the same hyperplane is used to predict the labels of
unlabeled data points based on their location on either side of
the hyperplane. Due to its ability to segment the feature space,
SVM is highly suitable for biological labels that are more likely
to be discrete categories than continuous numbers, and has
been frequently used for genetic and other biological data.67 In
addition, the kernel method is still applicable to SVM, enabling
the algorithm to effectively adapt to complex feature spaces.
This allows for higher specificity when separating samples that
may otherwise have been found as outliers on the wrong side
of the hyperplane.60 One drawback of this method emerges
from the hyperplane itself, which is inherently limited to binary
segmentation. However, this limitation can be overcome
through training multiple SVMs for data sets with more than
two categories. First, one category is chosen, and an SVM is
trained to predict whether the training data points belong to
this category or not. Then, a second category other than the
first one is chosen and an SVM is generated to predict if the
training data points belong to the second category or not.
Repeat this process for all remaining categories to produce a
full segmentation of the whole data set.
An example of an SVM can be seen in the 2017 paper by

Chen and Visco, in which they utilized SVM models to screen
the PubChem Compound Database to identify compounds
with the potential to inhibit the Cathepsin L receptor.68 The
Cathepsin L receptor is thought to be a key receptor in many
viral disease pathways, including malaria and Ebola. The
researchers used SVM both to classify their data into an initial
active/inactive data set and then again to perform a regression
to identify the strength of the activity for each compound.
SVM was an ideal fit for this problem due to its ability to
perform both classification and regression, which helped to
narrow down their data set and expedite inhibitor identi-
fication. This study shows the potential for significantly
reducing the cost of ligand discovery by implementing a first
round of testing in silico. Following this, the predictions were
experimentally validated, with the results being used to further
refine their model to obtain a final predictive accuracy of 75%.
This approach significantly improved upon the efficiency of
previous screening methods, with traditional high-throughput
screening methods typically only reaching a success rate of
<1%.
Decision Trees. A decision tree is an extremely

straightforward method of ML in which a number of
independent variables, in the form of features, are used to
create a branching path that leads you toward your dependent
variable with increasing specificity as you proceed along the
tree. The variables can be either quantitative or qualitative, and
the quantitative variables can be continuous or discrete. Each
split along the branching path is performed on a single
independent variable, which results in this model being ideal
for experiments with a large number of independent variables.

ACS Applied Bio Materials www.acsabm.org Review

https://doi.org/10.1021/acsabm.3c00054
ACS Appl. Bio Mater. 2024, 7, 657−684

666

www.acsabm.org?ref=pdf
https://doi.org/10.1021/acsabm.3c00054?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

However, a single tree can predict only one dependent
variable, so multiple trees need to be generated for more than
one dependent variable. Additionally, decision trees do not
perform well on large data sets, as it would be overly
computationally demanding.
The decision tree is a common method of supervised ML,

which employs a hierarchical decision-making model to split
input features according to the labels in the training data.60

This method is fast to calculate and can utilize both numerical
and categorical data. The tree itself is compiled through a
successive binary splitting of the input features while
minimizing the prediction error for each split by comparing
the performance of all possible splits. Thus, the resulting
decision tree can also be visualized as a flowchart (such as
Figure 3) for ease of rational interpretation. The output of a
decision tree is in the form of discrete categories. Since the
predictions are not derived from a linear combination of the
input features, decision trees are inherently capable of handling
nonlinear data sets. However, decisions made by a decision
tree are not necessarily infallible and are prone to overfitting
due to the nature of categorization: with a large tree depth, or a

larger number of consecutive decisions, categories run the risk
of containing very few data points, leading to overfitting and
poor prediction performance on testing data.60 In addition,
decision trees are not the best choice for predictions of
numerical labels due to the categorical nature of its output,
which can result in lower accuracy when compared with other
models trained with the same data. However, continuous labels
can be predicted by taking the average of the labels in the
predicted category. Despite these drawbacks, the performance
of this model can be improved by generating multiple decision
trees on the same data set. This method is called the random
forest algorithm and will be covered in detail in the next
section.
An example of a typical decision tree model can be seen in

Figure 6, which is derived from a study by Yuan et al.69 The
authors of this paper utilized both a decision tree and a “tree
harvesting” algorithm to improve the accuracy of the tree.
They only analyzed simulated data, but through that they were
able to demonstrate the applicability of the decision tree
method to the processing of chemical discovery data. As can be
seen in Figure 6, the tree that they generated contained nodes

Figure 6. Decision tree model created for high-throughput drug discovery. The circular nodes are those that lead to a subsequent node, while the
square nodes are those that end in a terminal decision. This model utilizes common molecular dimensions such as molecular weight (MolWt) and
melting point (MeltPt). The decision for this model is binary, resulting in either inactive (0) or active (1), which is displayed in the top row of each
node. The total number of samples is displayed in the second row of each node to the left of the colons, with the number of active compounds yet
to be detected on the other side of the colons. Those that are labeled as nodes 1, 2, or 3 are the only nodes that result in the classification of the
molecules as active. Reproduced from ref 69. Copyright 2012 American Chemical Society.

ACS Applied Bio Materials www.acsabm.org Review

https://doi.org/10.1021/acsabm.3c00054
ACS Appl. Bio Mater. 2024, 7, 657−684

667

https://pubs.acs.org/doi/10.1021/acsabm.3c00054?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acsabm.3c00054?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acsabm.3c00054?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acsabm.3c00054?fig=fig6&ref=pdf
www.acsabm.org?ref=pdf
https://doi.org/10.1021/acsabm.3c00054?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

for making decisions (first row of number on the nodes, 0 as
inactive, and 1 as active) based on common chemical
properties such as the melting point (MeltPt) and molecular
weight (MolWt). The total number of chemicals in a node is
shown to the left of the colon on the second row of each node,
while the number of positive chemicals yet to be classified
appears on the other side of the colon. A similar approach can
be applied to real data to help narrow down the molecular
possibilities and make subsequent screening attempts more
efficient.
Random Forest. The random forest algorithm, initially

formulated in 1995, constructs an ensemble of multiple
decision tree models.70 The motivation for this method arose
from the problem that decision trees tend to overfit the
training data due to its prediction being an average of a subset
of the training data. By constructing multiple decision trees,
this ensemble model will potentially achieve higher perform-
ance, while the computational cost remains relatively low due
to the ease of generating decision trees.
However, there is another layer of complication when it

comes to constructing multiple decision trees on the same data
set: the decision tree algorithm is deterministic, and without
alterations to the input, the model will remain the same. To
overcome this problem, bootstrapping can be employed.
Utilizing bootstrapping, it is possible to generate different
bootstrapped data sets from the same input data set and train
multiple unique decision trees. The final prediction can be
calculated as the average of predictions from all decision trees
for continuous labels or determined to be the most commonly
predicted label for categorical labels, also known as plurality
voting. This has proven to vastly reduce overfitting compared
with single decision tree models. To further reduce overfitting,
a random selection of input features can be artificially removed
or hidden during training of each decision tree. This is to
prevent the case where all models converge onto using one or a
few input features when these features are much more
correlated with the labels than the rest of the features.
An example of a random forest classification can be seen in

the 2021 experiment from Kapsiani and Howlin in which they
were able to predict whether a compound would extend the life
of C. elegans.71 Using molecular descriptors as their features
from the DrugAge database, the authors trained 5 random
forest models on compounds with confirmed antiaging
abilities. The best model achieved a prediction accuracy of
85.3%, and was further applied to an external database
consisting of 1,738 small molecule compounds, where 15
compounds were predicted to extend the life of C. elegans with
over 80% predicted probability. Though the study lacked
experimental validation on its own, 9 out of the 15 predicted
compounds were validated from the previous literature.
Naıv̈e Bayes Algorithm. The naiv̈e Bayes algorithm is

similar to SVM and decision trees in that it is designed for
classification tasks. As a result, the best outcome will be from
the use of qualitative variables for the variables, unless the
quantitative variables are normally distributed.60 However, in
contrast to SVM and decision trees only being able to return a
single label as the output, naiv̈e Bayes algorithm produces a
comprehensive list of probabilities for observing each possible
label value.72 It achieves this by employing Bayes’ theorem to
predict the probability of each label according to the input
features. For example, suppose we would like to predict the
incidence rate, or probability of cancer in the population over
the age of 80, denoted as P(Cancer | Age >80), also called the

posterior. Bayes’ theorem states that the posterior probability
can be calculated as

P(Cancer Age 80) P(Age 80 Cancer)

P(Cancer)/P(Age 80)

| > = > |

× >

P(Age >80 | Cancer), also called the likelihood, denotes the
probability of observing people over the age of 80 within the
population that has been diagnosed with cancer. P(Cancer), or
the prior, is the probability of observing cancer patients within
the entire population. Similarly, P(Age >80), or the evidence,
is the probability of observing people of age over 80 in the
entire population. Assuming we sampled 500 random
individuals in the population, a possible result can be seen in
Table 1.

In this case, the likelihood is

P(Age 80 Cancer) 4/(4 1) 80%> | = + =
Thus, the posterior can be calculated as follows:

P(Cancer Age 80) 80% 1%/10% 8%| > = × =
The naiv̈e Bayes algorithm applies the same rule to a labeled

input data set. The features take the place of the “age” criteria
in the example, and the labels take the place of the “cancer”
criteria in the sample. For categorical data, the algorithm
calculates the posterior probability P(label | features) for each
label in the same way as the aforementioned tabulated
example. For continuous data, a probability distribution
needs to be assumed for each of the features in order to
allow the query of any value on each of the features. A
common distribution is the Gaussian distribution, also known
as a normal distribution. Each distribution contains parameters
that need to be fine-tuned to fit the input features. Then the
algorithm again applies Bayes’ theorem to solve for the
posterior probability. Here, a key assumption is made: all input
features are mutually independent of each other. That is,
changes in one feature do not result in changes in any of the
other features. With this naiv̈e assumption, the posterior
probability is proportional to the product of the likelihood for
each feature P(feature | label), and the prior probability for
each label P(label). Since the evidence P(feature) is only
dependent on the composition of the input data set and not
the fitted distribution, it becomes a constant scaling factor and
does not need to be optimized. Finally, to derive the
parameters of the distributions, the method of maximum
likelihood is applied, where the parameters are gradually tuned
to maximize the posterior probability.
An example of a naiv̈e Bayes model can be seen in the 2018

paper by Perryman et al. in which the researchers constructed a
model for predicting the potential cytotoxicity of experimental
therapeutic compounds on Vero cells.73 They obtained their
training data from molecules that had been previously assayed
for their cytotoxicity. The training data set contains a variety of
features, including molecular weight, number of aromatic rings,

Table 1. A Simple Example Data Set to Illustrate Bayes’
Theorem

Cancer No Cancer Total

Age > 80 4 46 50 (10%)
Age ≤ 80 1 449 450 (90%)
Total 5 (1%) 495 (99%) 500

ACS Applied Bio Materials www.acsabm.org Review

https://doi.org/10.1021/acsabm.3c00054
ACS Appl. Bio Mater. 2024, 7, 657−684

668

www.acsabm.org?ref=pdf
https://doi.org/10.1021/acsabm.3c00054?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

number of hydrogen bond donors/acceptors, and so on. The
naiv̈e Bayes model trained on the aforementioned data set was
able to predict cytotoxic effects and was validated on molecules
outside of the training data set with known properties. In a
later publication from the same research group, a similar
methodology was utilized to prescreen compounds that could
be used against Rickettsia canadensis infections on a Bayesian
model prior to experimental high throughput screening.74 This
latter experiment validated the utility of naiv̈e Bayes models in
experimental settings. The training set for the former model
was made available to experimentalists interested in prescreen-
ing the cytotoxic effects of molecules and could prove highly
beneficial in reducing the number of molecules needing
experimental screening, thus accelerating the rate of
therapeutic molecule development.
k-Nearest Neighbors (k-NN). The k-nearest neighbors (k-

NN) algorithm is a flexible algorithm that can predict both
discrete and continuous labels. The variables can be either
quantitative or qualitative, and the quantitative variables can be
either continuous or discrete. The variables from the training
data set are mapped as points on a graph, with the labels of
training points being used to predict the labels of unlabeled

points outside of the training data.75 This makes k-NN
extremely useful for data sets with missing labels, where labeled
points can be used as the training data set for k-NN to generate
labels for points without one. However, limitations do exist, as
k-NN cannot work effectively on large data sets. This is
because the number of dimensions increases as the number of
features in the data set increases, which renders the algorithm
ineffective. Each additional dimension added here serves to
further separate the data until it becomes difficult for the
algorithm to discern the relatedness between the data points
due to their vast separation.
The core concept of k-NN is simple: points close to one

another should have similar labels. The algorithm is quite
distinct from the previous supervised learning algorithms in
that it does not require training. When given a labeled data set,
and an unlabeled point with a set of features to predict its label,
k-NN first picks k labeled data points closest to, or the most
similar to, the unlabeled point in terms of their features. To
derive a discrete label, the algorithm applies plurality voting
from the selected labeled points, which means that the point of
interest is assigned the label that is most common among the k
closest labeled points (Figure 7). To derive a continuous label,

Figure 7. Visualization of the k-nearest neighbor (k-NN) algorithm. (A) A labeled data set with 2 features and 3 categories (orange circles, green
squares, pink triangles). An additional unlabeled data point is located at the center (black diamond outline). (B) The k-NN algorithm is applied to
determine the category of the unlabeled data point. With k = 1, only the nearest labeled point to the unlabeled point is considered, indicated by a
line between the two points. In this case, the nearest labeled point belongs to category 2, and thus the unlabeled point is assigned to category 2 as
well (green diamond). (C) With k = 4, there are a total of 1 point in category 2 and 3 points in category 3 near the unlabeled point. By applying
plurality voting (3 > 1), the unlabeled point is assigned to category 3 (pink diamond). (D) With k = 9, there are a total of 4 points in category 1, 2
points in category 2, and 3 points in category 3 near the unlabeled point. Through plurality voting (4 > 3 > 2), the unlabeled point is assigned to
category 1 (orange diamond).

ACS Applied Bio Materials www.acsabm.org Review

https://doi.org/10.1021/acsabm.3c00054
ACS Appl. Bio Mater. 2024, 7, 657−684

669

https://pubs.acs.org/doi/10.1021/acsabm.3c00054?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acsabm.3c00054?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acsabm.3c00054?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acsabm.3c00054?fig=fig7&ref=pdf
www.acsabm.org?ref=pdf
https://doi.org/10.1021/acsabm.3c00054?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

the algorithm averages the labels of the selected labeled points.
A major benefit of k-NN is its ability to classify more than two
categories without needing multiple models, which is due to
the nature of plurality voting. In addition, the fact that k-NN
does not require training means that it is easy to implement.
However, k-NN will produce highly different results depending
on the type of kernel function chosen. To remedy this
drawback, multiple k-NN models with different kernel
functions that emphasize different features can be tested and
selected for best performance. Different k values should also be
tested, since with larger k values, the prediction will be based
on a more comprehensive selection of points, but you run the
risk of including points too dissimilar to the point of interest
and vice versa. This issue is demonstrated in Figure 7 where
the point of interest is situated at distances similar to three
categories of labeled data points (Figure 7A). With k = 1, the
point of interest will be labeled according to the single nearest
point, which belongs to category 2 (Figure 7B). With k = 4, the
4 nearest points are considered for labeling the point of
interest. Since there are 3 points in category 3 and 1 point in
category 2, the point of interest is labeled as category 3 (Figure
7C). In a similar manner, with k = 9, the point of interest is
labeled as category 1 since within the 9 nearest points there are
4 points belonging to category 1, a number higher than both
categories 2 and 3 (Figure 7D). Another drawback lies in the
amount of calculation needed. As the labeled data set increases

in size, the amount of calculation increases rapidly since each
prediction requires as many similarity calculations as the
number of the labeled data points.
An example of k-NN can be seen in the 2020 paper by Arian

et al., in which the authors utilized a k-NN model to identify
small molecules capable of inhibiting protein kinases that play
important roles in cancer.76 The researchers selected a set of
six molecular descriptors as features before using k-NN to
classify unknown molecules into those capable of inhibiting
kinases and those incapable. They utilized seven neighbors for
determining the unknown molecules. The model was validated
through comparison with SVM and naiv̈e Bayes algorithm,
with the k-NN model outperforming the others on all metrics,
including accuracy (percentage of correct predictions among
all predictions), sensitivity (percentage of correct predictions
among all molecules experimentally verified to inhibit protein
kinases), and specificity (percentage of correct predictions
among all molecules experimentally verified to not inhibit
protein kinases).
Summary. In this section, seven distinct supervised

learning algorithms were introduced and explained. They are
all designed to make predictions using training data sets
composed of both features and labels, but depending on the
type of predicted label, the nature of the algorithm, and the
type of the output, different algorithms will suit different needs
(Figure 8). Some methods can handle both continuous and

Figure 8. A simple diagram for determining what supervised learning algorithms to use. In this review, a total of 6 supervised learning algorithms
are introduced, each with its own strength and weaknesses. To determine which algorithm suits your needs, first the type of label needs to be
considered. For continuous labels, there are 5 algorithms suitable for such predictions. Linear regression and logistic regression predict continuous
labels by performing a curve fitting on the full input data set, while decision trees, random forest, and k-nearest neighbors achieve this through
averaging a subset of input data points. For discrete labels, including qualitative and categorical labels, there are 6 algorithms to choose from.
Support vector machine, decision trees, random forest, and k-nearest neighbors will make a single prediction on the most suitable label, while
logistic regression and naiv̈e Bayes generate a comprehensive list of possible labels, each with a probability or weight attached to it. Of note, logistic
regression, decision trees, and k-nearest neighbors are capable of predicting both continuous and discrete labels.

ACS Applied Bio Materials www.acsabm.org Review

https://doi.org/10.1021/acsabm.3c00054
ACS Appl. Bio Mater. 2024, 7, 657−684

670

https://pubs.acs.org/doi/10.1021/acsabm.3c00054?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acsabm.3c00054?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acsabm.3c00054?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acsabm.3c00054?fig=fig8&ref=pdf
www.acsabm.org?ref=pdf
https://doi.org/10.1021/acsabm.3c00054?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

discrete labels, such as logistic regression, decision trees,
random forest, and k-nearest neighbors, while others can only
handle one or the other, such as linear regression, support
vector machine, and naiv̈e Bayes. For continuous label
prediction (Figure 8, left), linear regression and logistic
regression predict the labels by fitting a curve to the training
data, while decision trees, random forest, and k-nearest
neighbors predict the labels by averaging a small group of
training data points. For discrete label prediction (Figure 8,
right), support vector machine, decision trees, random forest,
and k-nearest neighbors only give a single predicted label as the
output, while logistic regression and naiv̈e Bayes give multiple
predictions, with different weights or probabilities attached to
each prediction.

■ UNSUPERVISED LEARNING
In contrast to supervised learning, unsupervised learning
attempts to extract meaningful information from unlabeled
data. As such, no human input is needed when it comes to data
set labeling. This is a significant advantage over supervised
learning because of the high labor and time costs of annotating
data sets. In this section, five unsupervised learning algorithms
across three categories will be discussed. The categories
include dimensionality reduction, clustering, and density
estimation. Dimensionality reduction algorithms aim to reduce
the number of features needed to distinguish between different
points in the data set. Clustering algorithms attempt to group
data points together that are similar in their features. Density
estimation algorithms are designed to approximate the
distribution from which the data set is sampled.77

Principal Component Analysis (PCA). Principal compo-
nent analysis (PCA) belongs to the family of dimensionality
reduction algorithms. PCA is an extremely common method
for ascertaining the general trend in your data set, while
making it easier to analyze by reducing the number of
dimensions.78 It essentially creates a working summary of your
data with dimensionality suitable for standard algorithms. It
requires the use of continuous variables and works best with
higher dimensional data sets. Additionally, because it seeks to
find overarching patterns in your data, it will be more accurate
with larger data sets.

PCA attempts to fit an ellipsoid (a shape generalized from a
2D ellipse to higher dimensions) to the input data set such that
as many input data points as possible are enclosed while
keeping the volume low (Figure 9A, red ellipsoid). Then it
extracts the direction and length of its axes as its output
(Figure 9A, blue arrows). The fitted ellipsoid will have the
same number of dimensions as the number of features, and is
constructed by calculating the direction of the axes of the
ellipsoid. The directions of the axes are called principal
components (PCs), and they are numbered according to the
length of the axes; PC1 corresponds to the longest axis, PC2
corresponds to the second longest axis, and so on (Figure 9A,
blue arrows). In addition, the order of the PCs indicates the
quantity of information they carry in terms of how different the
data points are from each other. In other words, the features in
the direction of PC1 contain the most amount of variance of
the data set, and those in the direction of PC2 contain the
second most amount of variance, and so on. Even though the
number of PCs is the same as the number of features, PCs
corresponding to the shortest axes can be discarded with
minimal impact on the representation of the input data set
since they contribute the least to the overall shape of the
ellipsoid (Figure 9B). This is how PCA is utilized for
dimensionality reduction. For each PC, a contribution score
can be calculated that quantifies the amount of information
that it captures. The contribution scores can aid in the decision
of the best number of PCs to keep.
PCA originates from mathematical analysis in linear algebra

and has found a wide variety of applications in many fields of
study including signal processing,79 mechanical engineering,80

meteorological science,81 structural dynamics,82 and ML.83 It
provides a mathematically rigorous and interpretable way of
condensing a set of features into a smaller set without losing
much information. In ML, PCA is commonly used in
conjunction with other algorithms to filter out features that
do not contribute significantly to distinguishing the data
points, thus reducing the computational load for the
downstream algorithm.83 However, since PCA relies on linear
algebra techniques, the PCs generated by PCA are always
linear combinations of some or all of the input features. As a
result, PCA may not be suitable for data sets that are highly

Figure 9. Visualization of the principal component analysis (PCA) algorithm. (A) PCA attempts to fit an ellipsoid over a given data set. Here PCA
is applied to a randomly generated 3D data set (red dots), and the fitted ellipsoid is visualized (pale red ellipsoid). The principal components
generated by PCA are represented by the direction of the axes, in descending order of their lengths. They are represented as blue arrows, and
labeled as PC1, PC2, and PC3 according to their lengths. (B) By only keeping the first few PCs and discarding the rest, a lower-dimensional
representation can be obtained without significant loss in the variance represented with the original data. Here, PC1 and PC2 are picked, and the
dimensionality of the data set is reduced from 3 to 2.

ACS Applied Bio Materials www.acsabm.org Review

https://doi.org/10.1021/acsabm.3c00054
ACS Appl. Bio Mater. 2024, 7, 657−684

671

https://pubs.acs.org/doi/10.1021/acsabm.3c00054?fig=fig9&ref=pdf
https://pubs.acs.org/doi/10.1021/acsabm.3c00054?fig=fig9&ref=pdf
https://pubs.acs.org/doi/10.1021/acsabm.3c00054?fig=fig9&ref=pdf
https://pubs.acs.org/doi/10.1021/acsabm.3c00054?fig=fig9&ref=pdf
www.acsabm.org?ref=pdf
https://doi.org/10.1021/acsabm.3c00054?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

nonlinear. Additionally, PCA can be easily biased by outliers.
Outliers, by definition, lie far away from the majority of the
data set. This creates highly elongated axes when PCA
attempts to fit an ellipsoid, resulting in PCs favoring outliers
over well-behaving data points. Thus, it is important to verify
that a given data set is suitable for PCA before applying the
algorithm.
PCA has been used for a variety of applications in the field of

small molecule design, and a number of examples can be found
across a wide range of fields. It has assisted other methods in
some notable examples such as its use in identifying the role of
small molecule serum metabolites on dengue disease severity,84

discovering molecules capable of activating Glucose-6-
Phosphate Dehydrogenase,85 and for elucidating the various
pharmacological properties of essential oils made from P.
senacia and S. coriaceum.86 These few examples can hardly
begin to highlight the versatility and widespread applicability of
PCAs for biological applications, and they should be
considered in any cases that could benefit from a reduction
in dimensionality.
A more specific example in which PCA was utilized for

dimensionality reduction can be seen in the research done by
Li et al.87 In their work, the authors aimed to generate a model
for predicting drug−target interactions using the structural
information of both the drug molecules and the target proteins.
They devised a novel fingerprinting method to represent drug
structures, which includes information about the existence of
functional groups and fragments. For protein sequences, they
utilized the position-specific scoring matrix method to retain
the evolutionary information on the sequences. Before training
the ML model, the authors applied PCA to the input features
to reduce the computational load and the noise in the data set.
The authors then tested their model on multiple existing data
sets including Enzyme, GPCR, Ion Channel, and Nuclear
Receptor. In all tests, their model achieved high performance
through multiple types of quantification including precision,
accuracy, and sensitivity.
For mathematically inclined readers, PCA calculates the

eigenvalue and eigenvectors of the covariance matrix of the
input features. The PCs correspond to the eigenvectors and are
ordered according to their eigenvalues. Another algorithm
called singular value decomposition (SVD) can directly
calculate the PCs from the input features without the need
to generate the covariance matrix, but the details are beyond
the scope of this review.
Independent Component Analysis (ICA). Independent

component analysis (ICA) is another unsupervised learning
algorithm that, similar to PCA, attempts to dissect the data set
into a few key components. These components can then be

trimmed down according to their contribution to the data set,
thus lowering the dimensionality. However, instead of focusing
on the variance of the data set, ICA assumes that the
observations in the data set are linear combinations of multiple
independent sources, and attempts to mathematically derive a
set of independent components (ICs) that represents the most
likely set of sources contributing to the observations.88 While
PCA simply generates the same number of PCs as the
dimensionality of the data set, the number of ICs generated by
ICA is determined by user input. ICA can be applied to the
same data set multiple times with varying numbers of ICs, and
the results can be manually inspected to pick the best
performing version.
One of the classic applications of ICA is the “cocktail party

problem”, where the goal is to tease out the voice of a specific
person among the mixture of everyone’s voice at a cocktail
party. In this case, each person’s voice is an independent
source signal, and audio tracks recorded from different parts of
the room are the observations or the mixture signals. As a
simplified example, suppose there are two people talking in the
room providing the source signals (Figure 10, left, red and blue
lines), and two recordings from two different corners of the
room providing the mixture signals (Figure 10, middle, black
lines). Let s1 and s2 denote the two source signals and m1 and
m2 denote the two mixture signals. Assuming the mixtures are
linear combinations of the source signals, we have

l
moo
noo

m as bs

m cs ds
1 1 2

2 1 2

= +
= +

Here, a, b, c, and d can be any real numbers and represents
the ratio at which the two source signals are mixed to form the
mixture signals. With some algebraic manipulations, we can
calculate s1 and s2 with m1 and m2 as follows:

l
m
oooooo

n
oooooo

l
m
oooooo

n
oooooo

s
dm bm

ad bc

s
cm am

bc ad

s d
ad bc

m b
ad bc

m

s
c

bc ad
m

a
bc ad

m

1
1 2

2
1 2

1 1 2

2 1 2

=

=

=

=

This would be a simple solution to the problem at hand, but
we do not have the values of a, b, c, or d and thus this solution
cannot help us directly. However, this is where ICA comes into
play. Let us redefine a few variables in the equations as follows:

w
d

ad bc
x

b
ad bc

y
c

bc ad

z
a

bc ad

; ; ;= = =

=

Figure 10. Illustration of the independent component analysis (ICA) algorithm. The task ICA is designed to handle is to infer independent source
signals from linear mixtures. The source signals (left, red and blue) are mixed to produce mixture signals (middle, black), and the exact mixing is
unknown to ICA. By assuming the source signals are non-Gaussian and attempting to maximize non-Gaussianity, ICA is able to infer the source
signals (right, pale red and blue).

ACS Applied Bio Materials www.acsabm.org Review

https://doi.org/10.1021/acsabm.3c00054
ACS Appl. Bio Mater. 2024, 7, 657−684

672

https://pubs.acs.org/doi/10.1021/acsabm.3c00054?fig=fig10&ref=pdf
https://pubs.acs.org/doi/10.1021/acsabm.3c00054?fig=fig10&ref=pdf
https://pubs.acs.org/doi/10.1021/acsabm.3c00054?fig=fig10&ref=pdf
https://pubs.acs.org/doi/10.1021/acsabm.3c00054?fig=fig10&ref=pdf
www.acsabm.org?ref=pdf
https://doi.org/10.1021/acsabm.3c00054?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

Then the previous equations can be simplified as

l
m
oooooo

n
oooooo

l
moo
noo

s d
ad bc

m b
ad bc

m

s
c

bc ad
m

a
bc ad

m

s wm xm

s ym zm

1 1 2

2 1 2

1 1 2

2 1 2

=

=

= +
= +

Because we do not have the true values of w, x, y, and z, the
goal of ICA is to provide the best estimates of these numbers
that lead to the best approximations of the source signals. To
put it in mathematical terms, let ŵ, x̂, ŷ, and z ̂ denote the
estimated values of w, x, y, and z, and s1̂ and s2̂ denote the
estimated source signals. Then the estimated source signal can
be calculated as

l
moo
noo

s wm xm

s ym zm
1 1 2

2 1 2

= +
= +

With the goal defined, there is still one key problem: how
can one determine whether an estimated source signal is good
without knowing the ground truth? The solution lies in a key
assumption of ICA: the source signals are non-Gaussian. Non-
Gaussian signals are those whose distribution does not follow a
Gaussian or a normal distribution. In the case of the cocktail
party problem, the voice of an individual is highly unlikely to

follow a Gaussian distribution since the pitch of human voices
shifts to distinctive ranges in different scenarios (high pitch for
questions and exclamations, low pitch for mumbling, medium
pitch for explanations). Thus, the immediate metric for
evaluating the estimated source signals is to measure their
non-Gaussianity. Two notable algorithms that make use of this
metric are the projection pursuit algorithm and the FastICA
algorithm, both of which attempt to maximize the non-
Gaussianity of s1̂ and s2̂ by tuning the numbers ŵ, x̂, ŷ, and z.̂
An example that utilizes ICA in a domain that is applicable

to small molecule discovery can be found in the 2011 study by
Debrus et al.89 The authors were able to use ICA to separate
co-occurring peaks from high-performance liquid chromatog-
raphy (HPLC) results. This enabled them to screen and
separate 19 antimalarial compounds. They provided the
gradient time, temperature, and pH as parameters for the
model and found that using these features it was able to
successfully identify the separate compounds. This approach
could easily be applied to small molecule discovery as a means
to reduce the guesswork in identification assays.
For the mathematically inclined readers, the details of the

derivation of ICA, as well as the projection pursuit and
FastICA algorithms, can be found in the review paper written
by Alaa Tharwat.88

Figure 11. Visualization of the k-means clustering algorithm. (A) To initialize the algorithm, the number of clusters are determined (4 in this
example) and the centroids of the clusters are randomly generated (colored triangle, diamond, circle, and square). Data points are represented as
black dots. (B) The first step of k-means clustering is to assign each data point to a cluster. This is done by iterating through all data points,
calculating their distances to all cluster centroids, and assigning them to the cluster whose centroid is the closest to them. Here, the cluster
assignment is visualized with the color and shape of each data point to match its assigned cluster. (C) The second step is to recalculate the centroid
of each cluster. This is done by simply averaging the coordinates of all data points assigned to a cluster. The new centroids are visualized as large
colored shapes with black outlines, while the initial centroids are rendered as empty gray outlines. (D, E) The process detailed in panels (B) and
(C) are repeated, and the resulting clusters and centroids are visualized in (D) for iteration 2 and (E) for iteration 3. (F) After 6 iterations, the
centroids converge, and the algorithm finishes.

ACS Applied Bio Materials www.acsabm.org Review

https://doi.org/10.1021/acsabm.3c00054
ACS Appl. Bio Mater. 2024, 7, 657−684

673

https://pubs.acs.org/doi/10.1021/acsabm.3c00054?fig=fig11&ref=pdf
https://pubs.acs.org/doi/10.1021/acsabm.3c00054?fig=fig11&ref=pdf
https://pubs.acs.org/doi/10.1021/acsabm.3c00054?fig=fig11&ref=pdf
https://pubs.acs.org/doi/10.1021/acsabm.3c00054?fig=fig11&ref=pdf
www.acsabm.org?ref=pdf
https://doi.org/10.1021/acsabm.3c00054?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

k-Means Clustering. k-Means clustering is a clustering
algorithm. It is a commonly used method for inferring
information from unlabeled data sets, as its primary purpose
is to group similar data together and derive overall trends by
creating representative clusters.90 It can be used only on
quantitative and continuous data. While it is possible to use
this method for larger data sets, its performance is significantly
better on smaller data sets, as various adaptations will be
necessary to allow it to scale up to larger data sets due to
computational complexities.
The goal of k-means clustering is to segment the input data

set into k groups (called clusters) according to their features,
where k is a number specified by the user. The algorithm
achieves this by finding the center of each cluster, called the

centroid, through an iterative process. To initialize the
algorithm, k random points are chosen as the centroids of
the clusters in the feature space (Figure 11A, colored shapes).
During each iteration, for each given data point in the input
data set, the distances from itself to all the k centroids are
calculated, and the point is assigned to the cluster whose
centroid is the closest to it (Figure 11B). After all data points
have been assigned to a cluster, the centroid of each cluster is
recalculated by averaging the features of all data points within
the cluster (Figure 11C). Then the next iteration starts by
reassigning each training data point to the nearest cluster and
so on (Figure 11D and E). The process ends if the difference
in the centroid positions between consecutive iterations
reduces to zero or falls below a preset threshold (Figure

Figure 12. An example of a two-dimensional hierarchical clustering analysis. The data set clustered is a proteomic data pertaining to rat age-related
sarcopenia, obtained through 2-D PAGE gels and measured in triplicate. Rows represent proteins, and columns represent gels. Each cell represents
the log-ratio transformed amount of protein according to the color bar at the bottom. The dendrogram to the left represents the clustering of the
proteins, while the one on the top represents the clustering of the gels. The markers to the right (C1, C2, C3) denote three clusters of proteins that
showed similar behaviors across all gels. Reproduced from ref 95. Copyright 2007 American Chemical Society.

ACS Applied Bio Materials www.acsabm.org Review

https://doi.org/10.1021/acsabm.3c00054
ACS Appl. Bio Mater. 2024, 7, 657−684

674

https://pubs.acs.org/doi/10.1021/acsabm.3c00054?fig=fig12&ref=pdf
https://pubs.acs.org/doi/10.1021/acsabm.3c00054?fig=fig12&ref=pdf
https://pubs.acs.org/doi/10.1021/acsabm.3c00054?fig=fig12&ref=pdf
https://pubs.acs.org/doi/10.1021/acsabm.3c00054?fig=fig12&ref=pdf
www.acsabm.org?ref=pdf
https://doi.org/10.1021/acsabm.3c00054?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

11F). The k-means clustering algorithm is guaranteed to reach
a stable solution, but the solution is dependent on the initial
randomized position of the centroids.91 To circumvent this
problem, multiple rounds of k-means clustering can be
performed, and the best performing result can be chosen by
picking the clustering that minimizes distances between points
in the same cluster and maximizes distances between points
from different clusters. Additionally, similar to the k-nearest
neighbor algorithm, the performance of k-means clustering is
heavily dependent on the value of k that is chosen. With a low
k value, points far from each other may be grouped into the
same cluster; with a high k value, one natural cluster of points
may be further split apart. One way to narrow the choice of k is
to train multiple models with different values of k and to
choose the smallest one with reasonable performance.
An example of k-means clustering is found in the 2019

conference paper by Syarofina et al., in which the authors
utilize k-means clustering, along with a variety of clustering
evaluators, to create a model capable of discovering molecules
that inhibit dipeptidyl peptidase-4 (DPP-IV).92 DPP-IV is a
significant target for the treatment of type 2 diabetes mellitus,
and the discovery of potential inhibitors for DPP-IV is an
important drug development goal. The model discussed here
was trained on a set of 100 known DPP-IV inhibitors prior to
subsequent cluster evaluation. They were able to identify key
molecular properties that can be used to reduce the number of
assays necessary for high-throughput screenings in the future.
Hierarchical Clustering. Hierarchical clustering is another

member of the various clustering unsupervised learning
algorithms. This clustering method groups similar data points
together to understand the overall trend of the data set.93 It
can be used with either quantitative or qualitative data, but
each data set must be limited to one data type and cannot be
mixed. Additionally, this method is only applicable to small
data sets and should not be used for larger data sets.
Unlike k-means clustering, hierarchical clustering does not

require the user to specify the number of clusters. Instead, it
produces a full binary tree of the input data set, where each
split in the tree results in two downstream clusters. The tree
ends with every data point in its own cluster, but the branches
can be “shaved” to obtain clusters of larger sizes. There are two
strategies to carry out hierarchical clustering: to start from one
single cluster and keep splitting the cluster into smaller
segments (top-down) or to start by treating each data point as
its own cluster and gradually merge small clusters into bigger
ones (bottom-up). In both strategies, the similarity between
data points is the criterion for splitting large clusters and
merging small clusters. Different similarity metrics in the form
of kernel functions can be employed depending on the types of
the input data set.94 The resulting tree is commonly visualized
as a dendrogram, where the length of the branches is inversely
proportional to the similarity between the two split clusters. An
example of hierarchical clustering is shown in Figure 12, where
the protein concentrations related to rat age-related sarcopenia
obtained from 2D PAGE gels is clustered.95 The dendrogram
on the top shows the clustering of different gels, while the one
on the left shows the clustering of different proteins. The
protein level of each cell is represented with different colors,
according to the color bar at the bottom. Labels C1, C2, and
C3 to the right of the figure indicate three groups of proteins
that behaved similarly across different gels. Hierarchical
clustering has found its uses in many biological contexts
including the derivation of phylogenetic relationships between

species, the discerning of gene expression patterns from
microarray data, and so on. This method is generally useful if
the input data set is expected to have a hierarchical structure.
An example of hierarchical clustering is found in the 2022

paper by Teles et al., in which they used hierarchical clustering
to build a model to screen for oxazole and oxadiazole
derivatives.96 These are compounds that are capable of fighting
L. infantum, the causative agent for the tropical disease
Leishmaniasis. They clustered their data based upon structural
and conformational features and were able to identify features
that can be used for future identification of antileishmanial
compounds. Additionally, their model was able to predict the
IC50 values of potential compounds accurately compared to the
experimental results.
Expectation-Maximization (EM) Algorithm. The final

algorithm in this section is the expectation maximization (EM)
algorithm. This method works by determining the probability
that a given data point belongs to a particular cluster of data
points. It can be used with continuous quantitative data and is
best suited for smaller data sets. It can be applied to larger data
sets as well but would require certain adjustments to make it
computationally viable.97

This algorithm has found use in the naiv̈e Bayes supervised
learning algorithm, but, when taken out of that context, it
simply aims to fine-tune the parameters of a probability
distribution to best fit a set of observed data and thus belongs
to the class of density estimation algorithms.98 For EM to
work, a probability distribution function with a number of
parameters must be assumed. The most commonly used
assumption is the Gaussian mixture model. In this model, the
distribution is assumed to have many peaks with the
distribution immediately around the peaks following a
Gaussian or normal distribution. Here, we will use the
Gaussian mixture model as our example. EM is an iterative
process, starting with a random guess for all of the parameters
in the model, which includes the location and the width of
each peak (corresponding to the mean and variance of each
single Gaussian distribution). Then, for each data point, an
estimation is made according to how far it is to each of the
peaks and how wide the peaks are, to discern which of the
peaks it most likely belongs to. This is called the expectation
step. Using these estimations, the locations and widths of the
peaks are modified in order to maximize their coverage of the
points assigned to them during the expectation step. This is
called the maximization step. Through many iterations of the
expectation-maximization steps, the parameters will converge
to a locally optimal solution near the initial random guess, and
the algorithm finishes when the parameters stop changing or
their changes fall below a certain threshold. Like k-means
clustering, which is also an iterative unsupervised learning
algorithm, EM is sensitive to the initialization of the
parameters.99 Thus, multiple rounds of randomized initial
parameters need to be carried out to ensure the robustness of
the resulting model. Another key to a successful EM model is
the choice of the probability distribution. For Gaussian mixture
models, the number of independent Gaussian distributions is
important for producing a reliable and interpretable overall
distribution. Depending on the structure of the input data set,
other distributions may provide a better fit than the Gaussian
mixture model.
EM algorithm differs from clustering algorithms in that it

provides a probabilistic view of the distribution of the input
data set instead of a clear-cut grouping or clustering. This may

ACS Applied Bio Materials www.acsabm.org Review

https://doi.org/10.1021/acsabm.3c00054
ACS Appl. Bio Mater. 2024, 7, 657−684

675

www.acsabm.org?ref=pdf
https://doi.org/10.1021/acsabm.3c00054?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

prove to be crucial for small molecule design in capturing the
large variations in chemical and biological assays comprehen-
sively. An example of expectation maximization, and more
specifically a Bayesian−Gaussian mixture model, can be seen in
the 2022 paper by Wei et al., in which the authors created a
web interface that is capable of accepting the input of a small
molecule and producing an output of potential targets.100 This
is accomplished by analyzing binding poses before screening
them against potential targets. This interface is publicly
available online and could help expedite the search for novel
drugs.
Summary. This section introduced five different unsuper-

vised learning algorithms, and they can be roughly divided into
three major categories. The first category is called clustering
algorithms and aims to segment a given data set according to
how similar the data points are within the feature space. To
achieve this, both k-means clustering and hierarchical
clustering resort to generating a well-defined grouping of the
data points. While k-means clustering is widely applicable to
any data set, hierarchical clustering is preferred when the data
set comes from a process that is hierarchical in nature such as
the evolution of species, functional grouping of proteins, and
mutation of genes. The second category is called density
estimation, and the expectation-maximization (EM) algorithm
belongs to this category. In contrast to clustering algorithms,
instead of generating a grouping of the data set, it takes a
probabilistic approach and attempts to find a distribution that
best fits the data set. Thus, EM is capable of providing a
confidence score on whether two points are within the same
category instead of a simple yes or no answer. Principal
component analysis (PCA) and independent component
analysis (ICA) belong to the final category of algorithms,
dimensionality reduction algorithms, that aims to reduce the
complexity of data sets. They are widely applied to situations
where the features in a data set are too numerous to be studied
efficiently. They have also been commonly used in conjunction
with supervised learning algorithms to reduce computational
load by reducing the number of features.

■ ADVANCED METHODS
In addition to the many algorithms already introduced in this Review,
there are many more ML methods with greater complexity and
performance that are highly applicable to small molecule designs. The
methods that will be introduced in this section are reinforcement
learning, semi-supervised learning, artificial neural networks, and
boosting algorithms. These were specifically selected due to their
versatility and applicability to small molecule discovery.
Reinforcement Learning. One class of advanced methods that is

particularly notable is reinforcement learning. Reinforcement learning
adopts a completely different approach to both supervised and
unsupervised learning methods. Instead of predicting the label using a
given set of features, it aims to explore an environment by iteratively
navigating through it. Reinforcement learning algorithms consist of
two parts: one that explores the environment, called the actor, and
one that evaluates the actor’s actions, called the critic. For example,
suppose we would like to develop a small molecule compound from a
known scaffold to bind to a protein. In this case, the environment
includes all compounds that can be generated from the scaffold, and
the actor would attempt to modify the scaffold by adding or removing
atoms. Then, after each round of modification by the actor, the critic
would simulate the binding between the new compound and the
protein to assign a score according to how strongly the two bind to
each other. In the next round, the actor will consider the score from
previous rounds and bias its decision on what modification to
introduce toward those more similar to those that achieved higher

scores. Reinforcement learning has been applied to a wide variety of
chemical and biological problems, including omics,101 medical
imaging,102 brain−machine interfaces,103 and small chemical com-
pound designs.104,105 With recent improvement of simulation
capabilities on molecular interactions, due to the development of
GPUs and supercomputing centers, reinforcement learning has seen a
surge in popularity when it comes to small molecule designs.106

In a recent research endeavor conducted by Gottipati et al.,105 the
authors utilized reinforcement learning to incorporate not only
criteria for biological activities but also their synthetical accessibility to
make sure the compounds suggested by the algorithm are possible to
synthesize chemically. The performance of the new algorithm, the
Policy Gradient for Forward Synthesis (PGFS) algorithm, is not
compromised by the consideration of ease of chemical synthesis and
is comparable with state-of-the-art reinforcement learning algorithms
such as Proximal Policy Optimization (PPO) and Actor-Critic using
Kronecker-Factored Trust Region (ACKTR). Finally, the authors
verified their algorithm in silico, and it successfully generated easy-to-
synthesize compounds that target three different HIV-related
biological processes.
Semi-supervised Learning. Another category of advanced ML

paradigm is semi-supervised learning. Semi-supervised learning
methods have recently risen in popularity, although many of them
are much more complex in structure than the algorithms introduced
previously. These algorithms are designed to handle data sets that are
partially labeled. The goal is to learn the correlation between features
and labels from the labeled data points with the assistance from the
feature distribution of the unlabeled data points. This is typically
achieved by assuming that the population from which the input data
set is sampled is likely to be continuous such that unlabeled data
points are likely to share the same label as a labeled point nearby. This
allows semi-supervised learning to attain comparable performance to
fully supervised learning while requiring significantly less human effort
to manually annotate data sets, much like unsupervised learning.
Semi-supervised learning has been successfully applied to many
aspects of small molecule design including predicting activity from
chemical structures,107 metabolic analysis,108 and drug target
prediction.109

In a study conducted by Bahi and Batouche,109 the authors utilized
a semi-supervised learning algorithm to predict new drug-target
interactions (DTI) using sparsely labeled data. Due to the large
amount of information available on drugs and on protein targets, it is
infeasible to experimentally test out each pair of drug−protein
interactions. Thus, the available DTI data set is mostly unlabeled, with
very few pairs reported in experimental literature. The authors
developed an algorithm using a combination of deep artificial neural
network and semi-supervised learning, termed DeepSS-DTIs, to
predict potential drug-target interactions within the data set hosted on
the database DrugBank. DeepSS-DTIs achieved an overall accuracy of
98%, and highly ranked predictions are verified through past
experimental literature.
Artificial Neural Networks. A highly powerful, but complicated,

class of machine learning algorithms, called artificial neural networks
(ANNs), has risen in popularity due to recent advances in computing
power, especially in the form of graphical processing units (GPUs).
This method is extremely versatile and capable of both classification
and regression. It can utilize supervised, unsupervised, and reinforce-
ment learning frameworks and performs best on large data sets.
Additionally, due to the wide variety of neural network frameworks, it
is possible to utilize a number of different variable types. ANNs can be
largely divided into three types: basic, convolutional (CNN), and
recurrent (RNN). This section will focus primarily on basic ANNs,
but it will also briefly touch on the variations to the technique listed
above.
ANNs, as the name suggests, imitate the architecture of biological

brains and weave a large quantity of simple calculation units called
neurons into a web of high complexity. The neurons in ANNs are
functionally similar to biological neurons.110 In a biological brain, a
neuron receives signals from neighbors through dendrites. These
signals are processed as input, and the result is sent as output to other

ACS Applied Bio Materials www.acsabm.org Review

https://doi.org/10.1021/acsabm.3c00054
ACS Appl. Bio Mater. 2024, 7, 657−684

676

www.acsabm.org?ref=pdf
https://doi.org/10.1021/acsabm.3c00054?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

Figure 13. Basics of artificial neural networks (ANNs). (A) A biological neuron receives inputs through its dendrites, processes the inputs, and
transmits its output through synaptic terminals. (B) A basic calculation unit, in an ANN. It receives inputs from upstream units, perform a weighted
sum of all the inputs plus a bias term, passes the sum through a function called the activation function, and finally outputs the result to downstream
units. The calculation units are termed “neurons” due to their similarity to biological neurons. (C) The basic architecture of ANNs consists of an
input layer, a hidden layer, and an output layer. Each layer consists of many neurons, and neurons in one layer can only receive inputs from the
layer immediately before them. The neurons in the input layer pass the features of the training data set to the hidden layers without calculations.
During training, the weights and bias of each neuron are tuned iteratively to improve the accuracy of the output. (D) The architecture of deep
learning ANNs. In contrast to basic ANNs, deep learning introduces multiple hidden layers (3 pictured) in between the input layer and the output
layer. The training process of deep learning ANNs is the same as basic ANNs. Due to the additional hidden layers, deep learning ANNs are more

ACS Applied Bio Materials www.acsabm.org Review

https://doi.org/10.1021/acsabm.3c00054
ACS Appl. Bio Mater. 2024, 7, 657−684

677

https://pubs.acs.org/doi/10.1021/acsabm.3c00054?fig=fig13&ref=pdf
https://pubs.acs.org/doi/10.1021/acsabm.3c00054?fig=fig13&ref=pdf
https://pubs.acs.org/doi/10.1021/acsabm.3c00054?fig=fig13&ref=pdf
https://pubs.acs.org/doi/10.1021/acsabm.3c00054?fig=fig13&ref=pdf
www.acsabm.org?ref=pdf
https://doi.org/10.1021/acsabm.3c00054?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

neurons at its synaptic terminals (Figure 13A). Similarly, a neuron in
an ANN accepts the output of other neurons as its input, performs a
weighted sum of the various inputs with an optional bias term (b +
Σxiwi, b: bias, xi: ith input, wi: weight of the ith input, Figure 13B),
and then passes the sum through a function called the activation
function (f, Figure 13B). The result is the output of the neuron (y,
Figure 13B), which is passed on to other neurons in the network. The
activation function is useful for limiting the range of the output to
avoid negative outputs and/or outputs with extremely large
magnitudes.110 However, unlike biological brains, where neurons
can connect to each other freely, ANNs are based on a layered and
hierarchical structure, where neurons on one layer can only pass their
outputs to the next layer. The simplest ANN architecture can be seen
in the form of the single-layer perceptron, which consists of an input
layer and an output layer (Figure 13C). This minimal structure is
referred to as a shallow neural network.111 The number of neurons in
the input layer and the output layer are dependent on the data set that
is to be learned. The reduced nature of this structure is beneficial in
that it takes less time to train but has the downside of only being
capable of learning functions that are linear in nature.
An example of an ANN, and specifically a shallow neural network,

can be seen in the 2019 work of Karim et al.112 Their study used a
combination of a decision tree and a shallow neural network to
predict the toxicity of a number of chemicals. This was accomplished
by using the decision tree to narrow down the features that are most
critical for predicting chemical toxicity, and the shallow neural
network to apply the features toward predicting the toxicity of a given
chemical. Their shallow neural network consisted of only one hidden
layer and ten neurons. This study highlighted the usefulness of
shallow neural networks, along with simpler ML designs in general,
due to the ability to train the model in a tenth of the time needed to
train a more complex deep neural network, with both obtaining
comparable results. That being said, this study does not directly
compare shallow networks with deep networks as a typical deep
neural network is able to derive its own features, while this study used
a decision tree to derive the features for the shallow neural network.
This separation between the two processes worked well in this case
but broke down when the authors attempted to alter the size of the
data set.
The next step in architectural complexity is the multilayer

perceptron, which can consist of one or more hidden layers. When
it contains three or more hidden layers, it can be considered a simple
form of deep learning. Deep learning is conceptually quite similar to
what has just been described as it is derived from the same idea of
using a seemingly biological model of neuronal connection to
facilitate an exchange of information between layers of artificial
neurons. But deep learning takes that concept one step further by
increasing the number of layers of neurons, which, in turn, increases
the amount of complexity that the model is capable of. These
additional layers are hidden and are responsible for processing the
data between the initial and final layer. Returning to the multilayer
perceptron, this model is simply a single layer perceptron, but with
additional hidden layers added. The number of neurons in the hidden
layers is flexible, and these layers enable greater computational

complexity. As a result, a multilayer perceptron, in contrast to a single
layer perceptron, is also capable of learning functions that are
nonlinear in nature. A downside for deep learning has previously been
mentioned in that it takes much longer to train the model. However,
once that model has been prepared, it can be used for a wide range of
similar problems through the utilization of a method known as
transfer learning.
Additionally, deep learning models are uniquely suitable for

implementing transfer learning.113−115 Transfer learning proposes
that a machine learning algorithm trained for one task can be partially
utilized on a different but similar task to reduce the computational
time. With the layered structure of deep learning models, transfer
learning can be implemented by simply replacing the last hidden layer
of a pre-trained network with a set of new neurons and performing a
quick training only on these neurons. This process is called fine-
tuning. During fine-tuning, the amount of training data required is
also significantly reduced compared to training a full deep learning
model. For example, if a deep learning model has already been trained
to distinguish between pictures of dogs and cats, then that same
network can be adapted to distinguish between pictures of wolves and
cheetahs by retraining the last hidden layer with a relatively small
amount of training data.114

The most recent demonstration of deep learning is the success of
AlphaFold, reported in literature in 2021.116 The algorithm first
processes the input of raw amino acid sequences through repeated
layers of a novel deep learning architecture, termed the Evoformer, to
derive spatial and evolutionary information. This information is then
passed through a structure prediction model that iteratively refines the
rotation and translation of each residue of the protein. The
performance of the AlphaFold algorithm was demonstrated during
the Critical Assessment of Structure Prediction round 14 (CASP14), a
biannually community wide experiment to determine and advance the
state of the art in modeling protein structures. AlphaFold out-
performed all other participants in CASP14 by a significant margin.
The median error rates of AlphaFold predictions are about 60−65%
lower than those of the next best performing method.116

Following from the multilayer perceptron, the next relevant step in
ANN models is autoencoder. Autoencoders are designed to learn
encodings of a given set of data. An autoencoder consists of two parts:
the encoder and the decoder (Figure 13E). The encoder learns to
map the features in the input data from a high dimensional space to a
low dimensional space, while the decoder learns to extrapolate
representations in the low dimensional space back into the high
dimensional space, where the features reside. After the training has
finished, the encoder is used to create reliable low-dimensional
representations of the input data, and further ML tasks can be
conducted on the encoded representations (Figure 13F). The
encoded representations offer accelerated learning for downstream
tasks due to the lower dimensionality. Finally, since the output of the
downstream ML tasks will be in the format of the encoded
representation, the decoder part of the autoencoder can extrapolate
the results back into the initial feature space.
While the simplest autoencoder consists of only three layers, the

input layer, the code layer, and the output layer (Figure 13E),

Figure 13. continued

time-consuming to train, but also perform better on complex tasks. (E) The architecture of a basic autoencoder. It consists of the input layer, the
code layer, and the output layer. The input layer and the output layer always have the same number of neurons, while the code layer has fewer
neurons than the other two layers. The connections between the input layer and the code layer encodes the input into a low-dimensional
representation into the code layer, and the connections between the code layer and the output layer extrapolates the low-dimensional
representation into its native form in the output layer. The first two layers are termed the encoder, while the last two layers are termed the decoder.
(F) A typical application of an autoencoder. After training the autoencoder, the encoder and the decoder are separated. The encoder is used to
generate a low-dimensional representation, and then pass it through a downstream ML task for further processing. After the downstream ML task
finishes and generates its output in the low-dimensional representation, the decoder is used to extrapolate back into its native form. (G) The
architecture of a deep autoencoder. Instead of a simple 3-layer configuration, additional hidden layers are added within the encoder and the
decoder portion of the algorithm (1 layer in the encoder and the decoder illustrated). There is no limit to how many hidden layers can be added,
but similar to deep learning, the computational cost increases as the number of hidden layers increases. Panel A created by Jonathan Haas under the
CC BY-SA 3.0 license.

ACS Applied Bio Materials www.acsabm.org Review

https://doi.org/10.1021/acsabm.3c00054
ACS Appl. Bio Mater. 2024, 7, 657−684

678

www.acsabm.org?ref=pdf
https://doi.org/10.1021/acsabm.3c00054?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

additional hidden layers can be added to the architecture to form a
deep autoencoder (Figure 13G). These hidden layers can assist with
improving the accuracy of the low dimensional representation and can
be crucial when the input data is highly complex. However, like any
deep learning ANNs, the addition of hidden layers always carries
computational burdens, and too many hidden layers may render the
algorithm intractable.
As a dimensionality reduction algorithm, autoencoders are

especially attractive for small molecule design because they inherently
provide a method to recover the native representation from the low-
dimensional representation via the decoder. In a study conducted by
Goḿez-Bombarelli et al., the authors trained two autoencoders on the
SMILES string of 108,000 molecules from the QM9 data set and
those of 250,000 drug-like molecules extracted at random from the
ZINC database, respectively.117 The autoencoders were able to
generate low-dimensional representations of these molecules that
accelerated the downstream prediction tasks. Additionally, the
properties of the molecules decoded from the predictions were
comparable to those predicted by using one-hot encoding of the
SMILES string.
Moving on from the more basic models of ANN, there are two

additional types that will be only briefly touched upon due to their
complexity but warrant mention because of their potential
applicability to molecular discovery efforts. These types are the
convolutional neural network (CNN) and the recurrent neural
network (RNN). CNNs differ from basic ANN in that they were
initially designed to process images in a way that mimics how the
brain processes visual signals from the eyes. The key distinction
between a CNN and a regular ANN is that a CNN makes use of the
mathematical operation called convolution. Convolution allows for
the individual items in the visual data to be identified and mapped as
distinct features. This causes it to be extremely useful for processing
visual data, which can also be extrapolated to include molecular
structures.
The last type is the recurrent neural network (RNN). RNNs are

distinct from both ANN and CNN due to their lack of directional
limitations. ANNs and CNNs are both feed-forward neural networks,
meaning that data are processed from input to output and never the
other way around. RNNs break away from this paradigm by allowing
their data to go in multiple directions at once, with the output of
downstream layers passing back to upstream layers to be reanalyzed as
input, thus further refining the model. RNN is most suitable for use
with data that are sequential in nature, and has been used for a wide
variety of applications such as in linguistic, musical, and genetic
data.118 However, it can also be seamlessly applied to problems in the
chemical space and has been robustly utilized for de novo molecular
generation.
Boosting Algorithms. Boosting algorithms aim to iteratively train

new models of a given supervised learning algorithm by adjusting the
weights of the input data points according to whether they were
correctly predicted in the past iteration. The final model is a sum of all
of the models trained during the process. This idea surfaced around
the early 1990s and has seen extensive development ever since.119

Boosting algorithms are commonly applied to decision trees but can
be used for other models as well.120 Because of their interdependence
with other models, their variable and data set requirements can be
determined from the requirements of the parent model. Two of the
most commonly used boosting algorithms are gradient boosting and
AdaBoost.
Gradient boosting comes from the concept of gradient descent, the

same concept that is used to iteratively find the best parameters for
linear regressions. Here, instead of applying it to a single model,
gradient descent is applied to the model generated from the previous
iteration to guide the construction of the next model.121 Gradient
boosting is an iterative process. To initialize, a basic model is used to
predict the training data set, most commonly a constant function.
Then, for each iteration, the error of the model from the previous
iteration is calculated, and using gradient descent, a new function is
calculated to minimize the error. Then the new function is added to
the model from the previous iteration to generate a new model, and

the loop continues. The algorithm stops when the prediction error of
the model falls below a given threshold. It may not be entirely clear as
to in which step the input features are reweighted, but the process of
calculating and minimizing the prediction error has a similar effect
since data points with higher error are prioritized due to their
significant contribution to the total prediction error. Since the
formulation of gradient boosting does not specify the type of model, it
is applicable to a wide range of supervised learning algorithms.
Another commonly used boosting algorithm is called AdaBoost,

which stands for adaptive boosting. AdaBoost is specifically designed
for classification tasks, i.e., supervised learning to predict discrete
labels, and is particularly well-suited for algorithms that are prone to
overfitting.122 AdaBoost starts with a basic model generated for a
given data set, where each data point has equal weighting. Then for
each iteration, AdaBoost increases the weighting of the misclassified
data points and decreases the weighting of those successfully
predicted by the model. In other words, data points whose labels
were not correctly predicted receive an increase in their weighting and
vice versa. A new model is then generated using the reweighted data
set. This process is repeated for a number of times that is defined by
the user, and the final model is the average of all of the previously
generated models.
An example of both gradient boosting and AdaBoost can be seen in

the 2022 paper by Moinul et al., in which the authors compare a
variety of ML methods to identify molecules capable of inhibiting
sodium glucose cotransporter 2.123 The inhibition of these trans-
porters is important for the potential discovery of antidiabetic drugs.
The authors utilized nine models to screen for potential inhibitors,
with those using gradient boosting or AdaBoost being among the top
performers. Though it was not experimentally validated, the model
itself holds promise for reducing the number of assays necessary for
future experimental projects.
Summary. This section introduced four additional methods that

provide a more complex glimpse into possible machine learning
approaches. The first of these methods was reinforcement learning,
which is a category in its own right and involves pitching an actor to
explore an environment against a critic that judges how well the actor
navigates the environment. The second type of algorithm is the semi-
supervised learning, which is capable of utilizing partially labeled data
sets for label prediction. Another method introduced was ANN, which
attempts to conceptually utilize the unique neural networks of
biological systems to create an ML model. This model is capable of
facilitating an interplay between layers of artificial neurons to produce
versatile and highly transferable outputs. The final topic introduced
was boosting algorithms, which modify the importance or weight of
training data points according to whether they were predicted
correctly in the previous repeat. These algorithms provide an
accelerated approach for enhancing the performance of repeats of
the same algorithm and may prove valuable when a particular
algorithm cannot achieve reasonable performance through simple
repeats alone.

■ ADDITIONAL TOPICS
In the previous sections, many ML algorithms were
introduced. Each has its own advantages and disadvantages.
Some are suitable for predicting categorical labels, while others
can generate continuous labels. In this section, we will cover a
few overarching topics about ML algorithms as a whole
including ensemble methods, the problem of overfitting, and
available coding resources.
Ensemble Methods. The concept of combining multiple

ML algorithms came from the simple fact that each ML
algorithm has its own advantages and disadvantages, and the
combination of many may provide a more comprehensive
solution to the task at hand. By utilizing many different
algorithms for the same problem, the modeling and prediction
results can potentially be improved. However, the amount of
computation required scales quickly with the number of

ACS Applied Bio Materials www.acsabm.org Review

https://doi.org/10.1021/acsabm.3c00054
ACS Appl. Bio Mater. 2024, 7, 657−684

679

www.acsabm.org?ref=pdf
https://doi.org/10.1021/acsabm.3c00054?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

algorithms combined; therefore, it is not a widely utilized
modality compared to the use of singular algorithms. On the
other hand, its utility has been demonstrated in the 2022 study
by Grimberg et al., in which they combined lasso regression, a
decision tree, and a convolutional neural network to identify
small molecules capable of targeting the RNA hairpin in the
ribosomal peptidyl transferase region of M. tuberculosis.124 The
activity of a number of these predicted molecules was
confirmed experimentally, and 4 out of 10 of those synthesized
resulted in the inhibition of protein translation in the
bacterium. This success rate is a significant improvement
upon traditional high-throughput screening methods.
An additional example of ensemble methods can be seen in

the 2021 paper by Wani and Roy, in which the authors worked
to create ML models to predict small molecules with the
potential to fight tuberculosis.125 After creating a wide variety
of models, they settled on a three-pronged approach utilizing
an Adaboost decision tree, a random forest classifier, and a k-
NN model. These three models were able to create consensus
predictions that were far more reliable than any single model
on its own and are believed to have the potential to increase
the success rate for later experimental screenings.
Overfitting. For supervised learning and ensemble learning

that incorporates supervised learning, overfitting is a common
problem. Overfitting occurs when the model fits not only to
the underlying correlation but also the noise within the
training data. It is usually characterized by impressive training
accuracy but poor testing accuracy on data not used during
training. A common method of reducing overfitting is called k-
fold cross validation.126 In k-fold cross validation, the input
data set is, as usual, split into a training data set and a testing
data set. Then the training data set is further split into k
subsets, each with the same number of data points. One of the
k subsets is held out, and the rest of the (k − 1) subsets are
used to train a model, while the held-out subset is subsequently
used to validate the model. This process is repeated until k
unique models have been trained, corresponding to each of the
k subsets being held out. Finally, the k models are averaged in a
weighted fashion according to their validation accuracy. The
averaged model is then validated again using the initial testing
data set. The k-fold cross validation method is capable of
reducing the risk of overfitting, although at the cost of
increased computational loads.
Another common source of overfitting is the number of

parameters in the model. While a model with more parameters
can accommodate more complex data sets, having too many
parameters will result in the model learning from random
fluctuations in the data set, especially when the number of
parameters is larger than the number of data points in the
training data. This form of overfitting can be mitigated through
a process called regularization.127 The goal of regularization is
to penalize the model for using too many nonzero parameters.
To achieve this effect, a penalty is added to encourage the
algorithm to minimize the magnitude of its parameters. This
penalty is usually proportional to the sum of the absolute
values of all parameters in the model or any other methods of
quantifying the total magnitude of the parameters. By adding
this penalty, the algorithm will see a decrease in its
performance score when any of the model parameters deviate
significantly away from zero, thus encouraging it to shrink their
magnitude. Regularization in ML can also be seen as an
application of Occam’s razor. With the increase in the number
of parameters in a model, more assumptions are made about

how the data set is structured. Since every assumption has a
chance to be wrong, a complex model has a greater chance of
failing due to incorrect assumptions compared to a simple
model. Thus, if a simple model and a complex model have
comparable performance on a task, then the simpler model is
preferred.
Coding Resources.With all of the ML algorithms covered,

one may wonder how to implement these algorithms without
an extensive mathematical and programming background. In
this section, we will cover a variety of existing programming
tools and libraries that will make it a much simpler task to
apply the algorithms to the problem at hand.
When it comes to machine learning, the most popular

programming language is Python. Python is designed to be
easily readable, with most of its keywords in English instead of
using punctuation marks. It uses indentations to delimit blocks
of code, and no semicolons are needed after statements. Many
libraries have been written for Python to take care of many
basic tasks in research including and not limited to data
formatting, manipulation, visualization, and so on. A few of the
most commonly used Python libraries are NumPy (support for
large arrays and matrices and high-level mathematical
functions), pandas (general data manipulation and analysis),
and Matplotlib (plotting and visualization library). For
machine learning algorithms, there are also quite a few open
source and free libraries with implementations of many of the
algorithms mentioned in this review. The scikit-learn library is
one such library, which features implementations of many
algorithms including linear regression, k-nearest neighbors,
support vector machines, random forests, principal component
analysis, and k-means clustering, among many others. It also
contains useful tools to help with preprocessing, feature
extraction, and normalization of your data. When it comes to
artificial neural networks and deep learning, libraries such as
PyTorch and TensorFlow provide ready-to-use scaffolds for
assembling a neural network suitable for your specific needs.
Layers of neurons can be easily generated and linked to each
other with simple built-in functions, and the libraries also
support advanced architectures including convolutional and
recurring neural networks. With such a wide choice of libraries,
it may seem rather overwhelming to get all of the software
packages installed and configured. However, the free Python
distribution called Anaconda has all of the aforementioned
libraries preinstalled. Anaconda is also available for Windows,
MacOS, and Linux, making it a versatile platform for machine
learning endeavors regardless of your operating system.
Anaconda also provides a user-friendly graphical interface
called the Jupyter Notebook, where short sections of code can
be tested and debugged immediately instead of having to finish
the full Python script. If a standalone installation is too
complicated, then Google also provides a browser-based online
solution for Python coding called Google Colab. The interface
of Google Colab is highly similar to that of Jupyter Notebook,
but all of your code will be executed on cloud computing
resources hosted by Google. It enables online collaboration,
and you can directly access files on Google Drive. One caveat
for Google Colab is that there are limitations on the amount of
computing power you are allocated, so if your ML algorithm is
computationally heavy, a standalone installation of Python
(such as Anaconda) may be necessary.
While Python is the most popular platform for ML, there are

alternatives if Python is not your preferred choice. One popular
coding language, MATLAB, provides two toolboxes related to

ACS Applied Bio Materials www.acsabm.org Review

https://doi.org/10.1021/acsabm.3c00054
ACS Appl. Bio Mater. 2024, 7, 657−684

680

www.acsabm.org?ref=pdf
https://doi.org/10.1021/acsabm.3c00054?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

ML: the Statistics and Machine Learning Toolbox and the
Deep Learning Toolbox. The Statistics and Machine Learning
Toolbox provides implementations of simple ML algorithms
such as k-means clustering, hierarchical clustering, SVM, linear
regression, PCA, and shallow ANN. The Deep Learning
Toolbox contains tools to design deep neural networks using a
graphical user interface, preprocess your raw data, create
comparisons with built-in pre-trained models, and so on.
Wolfram Mathematica also provides a suite of built-in
functions to help with ML tasks. Implemented ML algorithms
in Mathematica include, but are not limited to, decision tree,
logistic regression, random forest, SVM, k-means clustering,
autoencoder, ANN, CNN, RNN, and so on.

■ CONCLUSION
The field of small molecule design has seen a vast amount of
development in the past century and has evolved from relying
on natural extracts for compound discovery to high-throughput
synthesis of large quantities of molecules from existing
scaffolds. However, as the scale of experimental efforts
increases, the amount of time, labor, and cost required for
such endeavors will quickly exceed the capabilities of academic
research institutions. ML is an excellent method for
accelerating the progress of research and reducing the time
and labor requirements for small molecule design. Through the
application of supervised learning, unsupervised learning, and
advanced methods, new information can be inferred from
chemical and biological data sets from past literature, and
molecular predictions can be produced that are highly likely to
result in the desired effects. These predictions may assist in
solving many modern biological and chemical problems
including, but not limited to, antibiotic resistance,128 cancer
treatment,129 cardiovascular disease,130 and catalyst design.131

By utilizing the computational power of ML algorithms, the
number of candidates to test will be vastly reduced, and the hit
rate will be increased, thus greatly alleviating the demands on
time and effort. As the field of ML develops, more and more
computational methods will be developed to be tailored to the
needs of small molecule design and will propel the field of
small molecule design to new heights.

■ AUTHOR INFORMATION
Corresponding Author

Diwakar Shukla − Department of Bioengineering, University of
Illinois, Urbana−Champaign, Illinois 61801, United States;
Department of Chemical and Biomolecular Engineering,
Center for Biophysics & Computational Biology, and
Department of Plant Biology, University of Illinois,
Urbana−Champaign, Illinois 61801, United States;
orcid.org/0000-0003-4079-5381; Email: diwakar@

illinois.edu

Authors
Sarah E. Lindley − Department of Bioengineering, University
of Illinois, Urbana−Champaign, Illinois 61801, United
States; orcid.org/0000-0003-3418-6539

Yiyang Lu − Department of Chemical and Biomolecular
Engineering, University of Illinois, Urbana−Champaign,
Illinois 61801, United States; orcid.org/0000-0002-
9913-0416

Complete contact information is available at:
https://pubs.acs.org/10.1021/acsabm.3c00054

Author Contributions
S.E.L. and Y.L. contributed to the writing of this review. D.S.
provided constructive feedback and professional guidance
during the writing.
Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
The authors would like to express their gratitude for the fruitful
discussions and extensive suggestions from all Shukla Group
members, especially Austin T. Weigle, Krishna K. Narayanan,
and Diego Kleiman. S.E.L. and D.S. acknowledge support from
Herman Frasch Foundation for Chemical Research, Bank of
America, N.A., Trustee. D.S. acknowledges support from the
National Institutes of Health, under Award No.
R35GM142745. Y.L. and D.S. acknowledge support from the
project Realizing Increased Photosynthetic Efficiency (RIPE),
which is funded by the Bill & Melinda Gates Foundation,
Foundation for Food and Agriculture Research (FFAR), and
the UK Foreign, Commonwealth and Development Office,
under Grant No. OPP1172157.

■ REFERENCES
(1) DiMasi, J. A.; Feldman, L.; Seckler, A.; Wilson, A. Trends in risks
associated with new drug development: success rates for investiga-
tional drugs. Clin Pharmacol Ther 2010, 87 (3), 272−277.
(2) DiMasi, J. A.; Seibring, M. A.; Lasagna, L. New drug
development in the United States from 1963 to 1992. Clin Pharmacol
Ther 1994, 55 (6), 609−622.
(3) Dimasi, J. A. Risks in new drug development: approval success
rates for investigational drugs. Clin Pharmacol Ther 2001, 69 (5),
297−307.
(4) Sundstrom, M.; Pelander, A.; Angerer, V.; Hutter, M.; Kneisel,
S.; Ojanpera, I. A high-sensitivity ultra-high performance liquid
chromatography/high-resolution time-of-flight mass spectrometry
(UHPLC-HR-TOFMS) method for screening synthetic cannabinoids
and other drugs of abuse in urine. Anal Bioanal Chem. 2013, 405 (26),
8463−8474.
(5) Kondo, J.; Ekawa, T.; Endo, H.; Yamazaki, K.; Tanaka, N.;
Kukita, Y.; Okuyama, H.; Okami, J.; Imamura, F.; Ohue, M.; et al.
High-throughput screening in colorectal cancer tissue-originated
spheroids. Cancer Sci. 2019, 110 (1), 345−355.
(6) Lu, Y.; Bohn-Wippert, K.; Pazerunas, P. J.; Moy, J. M.; Singh, H.;
Dar, R. D. Screening for gene expression fluctuations reveals latency-
promoting agents of HIV. Proc. Natl. Acad. Sci. U. S. A. 2021, 118
(11), No. e2012191118.
(7) Helleboid, S.; Haug, C.; Lamottke, K.; Zhou, Y.; Wei, J.; Daix, S.;
Cambula, L.; Rigou, G.; Hum, D. W.; Walczak, R. The identification
of naturally occurring neoruscogenin as a bioavailable, potent, and
high-affinity agonist of the nuclear receptor RORalpha (NR1F1). J.
Biomol Screen 2014, 19 (3), 399−406.
(8) Brohm, D.; Metzger, S.; Bhargava, A.; Muller, O.; Lieb, F.;
Waldmann, H. Natural products are biologically validated starting
points in structural space for compound library development: solid-
phase synthesis of dysidiolide-derived phosphatase inhibitors. Angew.
Chem., Int. Ed. Engl. 2002, 41 (2), 307−311.
(9) Ghose, A. K.; Viswanadhan, V. N.; Wendoloski, J. J. A
knowledge-based approach in designing combinatorial or medicinal
chemistry libraries for drug discovery. 1. A qualitative and quantitative
characterization of known drug databases. J. Comb Chem. 1999, 1 (1),
55−68.
(10) Ganter, B.; Snyder, R. D.; Halbert, D. N.; Lee, M. D.
Toxicogenomics in drug discovery and development: mechanistic
analysis of compound/class-dependent effects using the DrugMatrix
database. Pharmacogenomics 2006, 7 (7), 1025−1044.

ACS Applied Bio Materials www.acsabm.org Review

https://doi.org/10.1021/acsabm.3c00054
ACS Appl. Bio Mater. 2024, 7, 657−684

681

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Diwakar+Shukla"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0003-4079-5381
https://orcid.org/0000-0003-4079-5381
mailto:diwakar@illinois.edu
mailto:diwakar@illinois.edu
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Sarah+E.+Lindley"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0003-3418-6539
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Yiyang+Lu"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0002-9913-0416
https://orcid.org/0000-0002-9913-0416
https://pubs.acs.org/doi/10.1021/acsabm.3c00054?ref=pdf
https://doi.org/10.1038/clpt.2009.295
https://doi.org/10.1038/clpt.2009.295
https://doi.org/10.1038/clpt.2009.295
https://doi.org/10.1038/clpt.1994.78
https://doi.org/10.1038/clpt.1994.78
https://doi.org/10.1067/mcp.2001.115446
https://doi.org/10.1067/mcp.2001.115446
https://doi.org/10.1007/s00216-013-7272-8
https://doi.org/10.1007/s00216-013-7272-8
https://doi.org/10.1007/s00216-013-7272-8
https://doi.org/10.1007/s00216-013-7272-8
https://doi.org/10.1111/cas.13843
https://doi.org/10.1111/cas.13843
https://doi.org/10.1073/pnas.2012191118
https://doi.org/10.1073/pnas.2012191118
https://doi.org/10.1177/1087057113497095
https://doi.org/10.1177/1087057113497095
https://doi.org/10.1177/1087057113497095
https://doi.org/10.1002/1521-3773(20020118)41:2<307::AID-ANIE307>3.0.CO;2-1
https://doi.org/10.1002/1521-3773(20020118)41:2<307::AID-ANIE307>3.0.CO;2-1
https://doi.org/10.1002/1521-3773(20020118)41:2<307::AID-ANIE307>3.0.CO;2-1
https://doi.org/10.1021/cc9800071?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/cc9800071?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/cc9800071?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/cc9800071?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.2217/14622416.7.7.1025
https://doi.org/10.2217/14622416.7.7.1025
https://doi.org/10.2217/14622416.7.7.1025
www.acsabm.org?ref=pdf
https://doi.org/10.1021/acsabm.3c00054?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

(11) Schenone, M.; Dancik, V.; Wagner, B. K.; Clemons, P. A.
Target identification and mechanism of action in chemical biology
and drug discovery. Nat. Chem. Biol. 2013, 9 (4), 232−240.
(12) Chakraborty, C.; Hsu, C. H.; Wen, Z. H.; Lin, C. S.;
Agoramoorthy, G. Zebrafish: a complete animal model for in vivo
drug discovery and development. Curr. Drug Metab 2009, 10 (2),
116−124.
(13) Dutta, G.; Zhang, P.; Liu, B. The lipopolysaccharide
Parkinson’s disease animal model: mechanistic studies and drug
discovery. Fundam Clin Pharmacol 2008, 22 (5), 453−464.
(14) Singh, V. K.; Thrall, K. D.; Hauer-Jensen, M. Minipigs as
models in drug discovery. Expert Opin Drug Discov 2016, 11 (12),
1131−1134.
(15) Compilation of CDER New Molecular Entity (NME) Drug and

New Biologic Approvals; U.S. Food and Drug Administration, 2023.
https://www.fda.gov/drugs/drug-approvals-and-databases/
compilation-cder-new-molecular-entity-nme-drug-and-new-biologic-
approvals (accessed 10-31-2022).
(16) del Alamo, J. A. Nanometre-scale electronics with III-V
compound semiconductors. Nature 2011, 479 (7373), 317−323.
(17) Ferain, I.; Colinge, C. A.; Colinge, J. P. Multigate transistors as
the future of classical metal-oxide-semiconductor field-effect tran-
sistors. Nature 2011, 479 (7373), 310−316.
(18) Jordan, M. I.; Mitchell, T. M. Machine learning: Trends,
perspectives, and prospects. Science 2015, 349 (6245), 255−260.
(19) Chan, M. C.; Chan, K. K.; Procko, E.; Shukla, D. Machine
Learning Guided Design of High-Affinity ACE2 Decoys for SARS-
CoV-2 Neutralization. J. Phys. Chem. B 2023, 127 (9), 1995−2001.
(20) Liu, C.; Che, D.; Liu, X.; Song, Y. Applications of machine
learning in genomics and systems biology. Comput. Math Methods
Med. 2013, 2013, 587492.
(21) Horne, J.; Shukla, D. Recent Advances in Machine Learning
Variant Effect Prediction Tools for Protein Engineering. Ind. Eng.
Chem. Res. 2022, 61 (19), 6235−6245.
(22) Carvalho, T. F. M.; Silva, J. C. F.; Calil, I. P.; Fontes, E. P. B.;
Cerqueira, F. R. Rama: a machine learning approach for ribosomal
protein prediction in plants. Sci. Rep 2017, 7 (1), 16273.
(23) Mi, X.; Shukla, D. Predicting the Activities of Drug Excipients
on Biological Targets using One-Shot Learning. J. Phys. Chem. B
2022, 126 (7), 1492−1503.
(24) Li, H.; Yap, C.; Xue, Y.; Li, Z.; Ung, C.; Han, L.; Chen, Y.
Statistical learning approach for predicting specific pharmacodynamic,
pharmacokinetic, or toxicological properties of pharmaceutical agents.
Drug Dev. Res. 2005, 66 (4), 245−259.
(25) Mager, D. E.; Shirey, J. D.; Cox, D.; Fitzgerald, D. J.;
Abernethy, D. R. Mapping the dose-effect relationship of orbofiban
from sparse data with an artificial neural network. J. Pharm. Sci. 2005,
94 (11), 2475−2486.
(26) Pandarinath, C.; O’Shea, D. J.; Collins, J.; Jozefowicz, R.;
Stavisky, S. D.; Kao, J. C.; Trautmann, E. M.; Kaufman, M. T.; Ryu, S.
I.; Hochberg, L. R.; et al. Inferring single-trial neural population
dynamics using sequential auto-encoders. Nat. Methods 2018, 15
(10), 805−815.
(27) Tikhonov, M. Theoretical microbial ecology without species.

Phys. Rev. E 2017, 96 (3−1), 032410.
(28) Casadiego, J.; Nitzan, M.; Hallerberg, S.; Timme, M. Model-
free inference of direct network interactions from nonlinear collective
dynamics. Nat. Commun. 2017, 8 (1), 2192.
(29) Horrocks, J.; Bauch, C. T. Algorithmic discovery of dynamic
models from infectious disease data. Sci. Rep 2020, 10 (1), 7061.
(30) Cammann, H.; Jung, K.; Meyer, H. A.; Stephan, C. Avoiding
pitfalls in applying prediction models, as illustrated by the example of
prostate cancer diagnosis. Clin Chem. 2011, 57 (11), 1490−1498.
(31) Seker, H.; Odetayo, M. O.; Petrovic, D.; Naguib, R. N.; Bartoli,
C.; Alasio, L.; Lakshmi, M. S.; Sherbet, G. V. Assessment of nodal
involvement and survival analysis in breast cancer patients using
image cytometric data: statistical, neural network and fuzzy
approaches. Anticancer Res. 2002, 22 (1A), 433−438.

(32) Rajkomar, A.; Oren, E.; Chen, K.; Dai, A. M.; Hajaj, N.; Hardt,
M.; Liu, P. J.; Liu, X.; Marcus, J.; Sun, M.; et al. Scalable and accurate
deep learning with electronic health records. NPJ. Digit Med. 2018, 1,
18.
(33) De Fauw, J.; Ledsam, J. R.; Romera-Paredes, B.; Nikolov, S.;
Tomasev, N.; Blackwell, S.; Askham, H.; Glorot, X.; O’Donoghue, B.;
Visentin, D.; et al. Clinically applicable deep learning for diagnosis
and referral in retinal disease. Nat. Med. 2018, 24 (9), 1342−1350.
(34) Gershell, L. J.; Atkins, J. H. A brief history of novel drug
discovery technologies. Nat. Rev. Drug Discov 2003, 2 (4), 321−327.
(35) Fleming, A. On the antibacterial action of cultures of a
penicillium, with special reference to their use in the isolation of B.
influenzae. Bull. World Health Organ 2001, 79 (8), 780−790.
(36) Abraham, E. P.; Chain, E.; Fletcher, C. M.; Florey, H. W.;
Gardner, A. D.; Heatley, N. G.; Jennings, M. A. Further observations
on penicillin. 1941. Eur. J. Clin Pharmacol 1992, 42 (1), 3−9.
(37) Bunin, B. A.; Ellman, J. A. A general and expedient method for
the solid-phase synthesis of 1, 4-benzodiazepine derivatives. J. Am.
Chem. Soc. 1992, 114 (27), 10997−10998.
(38) Zhang, C.; Lum, K. Y.; Taki, A. C.; Gasser, R. B.; Byrne, J. J.;
Wang, T.; Blaskovich, M. A. T.; Register, E. T.; Montaner, L. J.;
Tietjen, I.; et al. Design, synthesis and screening of a drug discovery
library based on an Eremophila-derived serrulatane scaffold.
Phytochemistry 2021, 190, 112887.
(39) Padwal, J. D.; Filippov, D. V.; Narhe, B. D.; Aertssen, S.;
Beuving, R. J.; Benningshof, J. C.; van der Marel, G. A.; Overkleeft, H.
S.; van der Stelt, M. Cyclopentitol as a scaffold for a natural product-
like compound library for drug discovery. Bioorg. Med. Chem. 2015, 23
(11), 2650−2655.
(40) Welsch, M. E.; Snyder, S. A.; Stockwell, B. R. Privileged
scaffolds for library design and drug discovery. Curr. Opin Chem. Biol.
2010, 14 (3), 347−361.
(41) Patil, V. M.; Masand, N.; Verma, S.; Masand, V. Chromones:
Privileged scaffold in anticancer drug discovery. Chem. Biol. Drug Des
2021, 98 (5), 943−953.
(42) Dutton, D. M.; Conroy, G. V. A review of machine learning.

knowledge engineering review 1997, 12 (4), 341−367.
(43) Yu, C.; Yao, W. Robust linear regression: A review and
comparison. Communications in Statistics-Simulation and Computation
2017, 46 (8), 6261−6282.
(44) Sarker, I. H. Machine Learning: Algorithms, Real-World
Applications and Research Directions. SN Comput. Sci. 2021, 2 (3),
160.
(45) Bouwmans, T.; Javed, S.; Sultana, M.; Jung, S. K. Deep neural
network concepts for background subtraction:A systematic review and
comparative evaluation. Neural Netw 2019, 117, 8−66.
(46) Ekins, S.; Puhl, A. C.; Zorn, K. M.; Lane, T. R.; Russo, D. P.;
Klein, J. J.; Hickey, A. J.; Clark, A. M. Exploiting machine learning for
end-to-end drug discovery and development. Nat. Mater. 2019, 18
(5), 435−441.
(47) Vamathevan, J.; Clark, D.; Czodrowski, P.; Dunham, I.; Ferran,
E.; Lee, G.; Li, B.; Madabhushi, A.; Shah, P.; Spitzer, M.; et al.
Applications of machine learning in drug discovery and development.
Nat. Rev. Drug Discov 2019, 18 (6), 463−477.
(48) Lavecchia, A. Machine-learning approaches in drug discovery:
methods and applications. Drug Discov Today 2015, 20 (3), 318−331.
(49) Fatima, M.; Pasha, M. Survey of machine learning algorithms
for disease diagnostic. Journal of Intelligent Learning Systems and
Applications 2017, 9 (01), 1.
(50) Gudivada, V.; Apon, A.; Ding, J. Data quality considerations for
big data and machine learning: Going beyond data cleaning and
transformations. International Journal on Advances in Software 2017,
10 (1), 1−20.
(51) Chen, C.; Yaari, Z.; Apfelbaum, E.; Grodzinski, P.; Shamay, Y.;
Heller, D. A. Merging data curation and machine learning to improve
nanomedicines. Adv. Drug Deliv Rev. 2022, 183, 114172.
(52) Xiong, G.; Shen, C.; Yang, Z.; Jiang, D.; Liu, S.; Lu, A.; Chen,
X.; Hou, T.; Cao, D. Featurization strategies for protein-ligand
interactions and their applications in scoring function development.

ACS Applied Bio Materials www.acsabm.org Review

https://doi.org/10.1021/acsabm.3c00054
ACS Appl. Bio Mater. 2024, 7, 657−684

682

https://doi.org/10.1038/nchembio.1199
https://doi.org/10.1038/nchembio.1199
https://doi.org/10.2174/138920009787522197
https://doi.org/10.2174/138920009787522197
https://doi.org/10.1111/j.1472-8206.2008.00616.x
https://doi.org/10.1111/j.1472-8206.2008.00616.x
https://doi.org/10.1111/j.1472-8206.2008.00616.x
https://doi.org/10.1080/17460441.2016.1223039
https://doi.org/10.1080/17460441.2016.1223039
https://www.fda.gov/drugs/drug-approvals-and-databases/compilation-cder-new-molecular-entity-nme-drug-and-new-biologic-approvals
https://www.fda.gov/drugs/drug-approvals-and-databases/compilation-cder-new-molecular-entity-nme-drug-and-new-biologic-approvals
https://www.fda.gov/drugs/drug-approvals-and-databases/compilation-cder-new-molecular-entity-nme-drug-and-new-biologic-approvals
https://doi.org/10.1038/nature10677
https://doi.org/10.1038/nature10677
https://doi.org/10.1038/nature10676
https://doi.org/10.1038/nature10676
https://doi.org/10.1038/nature10676
https://doi.org/10.1126/science.aaa8415
https://doi.org/10.1126/science.aaa8415
https://doi.org/10.1021/acs.jpcb.3c00469?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpcb.3c00469?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpcb.3c00469?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1155/2013/587492
https://doi.org/10.1155/2013/587492
https://doi.org/10.1021/acs.iecr.1c04943?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.iecr.1c04943?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1038/s41598-017-16322-4
https://doi.org/10.1038/s41598-017-16322-4
https://doi.org/10.1021/acs.jpcb.1c10574?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpcb.1c10574?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1002/ddr.20044
https://doi.org/10.1002/ddr.20044
https://doi.org/10.1002/jps.20384
https://doi.org/10.1002/jps.20384
https://doi.org/10.1038/s41592-018-0109-9
https://doi.org/10.1038/s41592-018-0109-9
https://doi.org/10.1103/PhysRevE.96.032410
https://doi.org/10.1038/s41467-017-02288-4
https://doi.org/10.1038/s41467-017-02288-4
https://doi.org/10.1038/s41467-017-02288-4
https://doi.org/10.1038/s41598-020-63877-w
https://doi.org/10.1038/s41598-020-63877-w
https://doi.org/10.1373/clinchem.2011.166959
https://doi.org/10.1373/clinchem.2011.166959
https://doi.org/10.1373/clinchem.2011.166959
https://doi.org/10.1038/s41746-018-0029-1
https://doi.org/10.1038/s41746-018-0029-1
https://doi.org/10.1038/s41591-018-0107-6
https://doi.org/10.1038/s41591-018-0107-6
https://doi.org/10.1038/nrd1064
https://doi.org/10.1038/nrd1064
https://doi.org/10.1021/ja00053a067?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ja00053a067?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.phytochem.2021.112887
https://doi.org/10.1016/j.phytochem.2021.112887
https://doi.org/10.1016/j.bmc.2015.01.040
https://doi.org/10.1016/j.bmc.2015.01.040
https://doi.org/10.1016/j.cbpa.2010.02.018
https://doi.org/10.1016/j.cbpa.2010.02.018
https://doi.org/10.1111/cbdd.13951
https://doi.org/10.1111/cbdd.13951
https://doi.org/10.1017/S026988899700101X
https://doi.org/10.1080/03610918.2016.1202271
https://doi.org/10.1080/03610918.2016.1202271
https://doi.org/10.1007/s42979-021-00592-x
https://doi.org/10.1007/s42979-021-00592-x
https://doi.org/10.1016/j.neunet.2019.04.024
https://doi.org/10.1016/j.neunet.2019.04.024
https://doi.org/10.1016/j.neunet.2019.04.024
https://doi.org/10.1038/s41563-019-0338-z
https://doi.org/10.1038/s41563-019-0338-z
https://doi.org/10.1038/s41573-019-0024-5
https://doi.org/10.1016/j.drudis.2014.10.012
https://doi.org/10.1016/j.drudis.2014.10.012
https://doi.org/10.4236/jilsa.2017.91001
https://doi.org/10.4236/jilsa.2017.91001
https://doi.org/10.1016/j.addr.2022.114172
https://doi.org/10.1016/j.addr.2022.114172
https://doi.org/10.1002/wcms.1567
https://doi.org/10.1002/wcms.1567
www.acsabm.org?ref=pdf
https://doi.org/10.1021/acsabm.3c00054?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

Wiley Interdisciplinary Reviews: Computational Molecular Science 2022,
12 (2), No. e1567.
(53) Yousefinejad, S.; Hemmateenejad, B. Chemometrics tools in
QSAR/QSPR studies: A historical perspective. Chemometrics and
Intelligent Laboratory Systems 2015, 149, 177−204.
(54) Zhou, Z.-H. Machine learning; Springer Nature, 2021; Vol. 26.
(55) Onskog, J.; Freyhult, E.; Landfors, M.; Ryden, P.; Hvidsten, T.
R. Classification of microarrays; synergistic effects between normal-
ization, gene selection and machine learning. BMC Bioinformatics
2011, 12, 390.
(56) Singh, D.; Singh, B. Investigating the impact of data
normalization on classification performance. Applied Soft Computing
2020, 97, 105524.
(57) Hofmann, T.; Schölkopf, B.; Smola, A. J. Kernel methods in
machine learning. annals of statistics 2008, 36 (3), 1171−1220.
(58) Vert, J. P.; Jacob, L. Machine learning for in silico virtual
screening and chemical genomics: new strategies. Comb Chem. High
Throughput Screen 2008, 11 (8), 677−685.
(59) Sun, H.; Huang, R.; Xia, M.; Shahane, S.; Southall, N.; Wang, Y.
Prediction of hERG Liability - Using SVM Classification, Boot-
strapping and Jackknifing. Mol. Inform 2017, 36 (4), 1600126.
(60) Kotsiantis, S. B.; Zaharakis, I.; Pintelas, P. Supervised machine
learning: A review of classification techniques. Emerging artificial
intelligence applications in computer engineering 2007, 160 (1), 3−24.
(61) Sorenson, H. W. Least-squares estimation: from Gauss to
Kalman. IEEE spectrum 1970, 7 (7), 63−68.
(62) Mustapha, A.; Mohamed, L.; Ali, K. An overview of gradient
descent algorithm optimization in machine learning: Application in
the ophthalmology field. In International Conference on Smart
Applications and Data Analysis; Springer, 2020; pp 349−359.
(63) Su, X.; Yan, X.; Tsai, C. L. Linear regression. Wiley

Interdisciplinary Reviews: Computational Statistics 2012, 4 (3), 275−
294.
(64) Janairo, G. I. B.; Yu, D. E. C.; Janairo, J. I. B. A machine
learning regression model for the screening and design of potential
SARS-CoV-2 protease inhibitors. Netw Model Anal Health Inform
Bioinform 2021, 10 (1), 51.
(65) Gfeller, D.; Grosdidier, A.; Wirth, M.; Daina, A.; Michielin, O.;
Zoete, V. SwissTargetPrediction: a web server for target prediction of
bioactive small molecules. Nucleic Acids Res. 2014, 42 (W1), W32−38.
(66) Daina, A.; Michielin, O.; Zoete, V. SwissTargetPrediction:
updated data and new features for efficient prediction of protein
targets of small molecules. Nucleic Acids Res. 2019, 47 (W1), W357−
W364.
(67) Burbidge, R.; Trotter, M.; Buxton, B.; Holden, S. Drug design
by machine learning: support vector machines for pharmaceutical data
analysis. Comput. Chem. 2001, 26 (1), 5−14.
(68) Chen, J. J. F.; Visco Jr, D. P. Developing an in silico pipeline for
faster drug candidate discovery: virtual high throughput screening
with the signature molecular descriptor using support vector machine
models. Chem. Eng. Sci. 2017, 159, 31−42.
(69) Yuan, Y.; Chipman, H. A.; Welch, W. J. Harvesting
classification trees for drug discovery. J. Chem. Inf Model 2012, 52
(12), 3169−3180.
(70) Ho, T. K. The random subspace method for constructing
decision forests. IEEE transactions on pattern analysis and machine
intelligence 1998, 20 (8), 832−844.
(71) Kapsiani, S.; Howlin, B. J. Random forest classification for
predicting lifespan-extending chemical compounds. Sci. Rep 2021, 11
(1), 13812.
(72) Rish, I. An empirical study of the naive Bayes classifier. In IJCAI

2001 workshop on empirical methods in artificial intelligence 2001, 3,
41−46.
(73) Perryman, A. L.; Patel, J. S.; Russo, R.; Singleton, E.; Connell,
N.; Ekins, S.; Freundlich, J. S. Naive Bayesian Models for Vero Cell
Cytotoxicity. Pharm. Res. 2018, 35 (9), 170.
(74) Lemenze, A.; Mittal, N.; Perryman, A. L.; Daher, S. S.; Ekins,
S.; Occi, J.; Ahn, Y. M.; Wang, X.; Russo, R.; Patel, J. S.; et al.
Rickettsia Aglow: A Fluorescence Assay and Machine Learning Model

to Identify Inhibitors of Intracellular Infection. ACS Infect Dis 2022, 8
(7), 1280−1290.
(75) Cover, T.; Hart, P. Nearest neighbor pattern classification.

IEEE transactions on information theory 1967, 13 (1), 21−27.
(76) Arian, R.; Hariri, A.; Mehridehnavi, A.; Fassihi, A.; Ghasemi, F.
Protein kinase inhibitors’ classification using K-Nearest neighbor
algorithm. Comput. Biol. Chem. 2020, 86, 107269.
(77) Ghahramani, Z. Unsupervised learning. In Summer school on

machine learning; Springer, 2003; pp 72−112.
(78) Wold, S.; Esbensen, K.; Geladi, P. Principal component
analysis. Chemometrics and intelligent laboratory systems 1987, 2 (1−3),
37−52.
(79) Sapatnekar, S. S. Overcoming variations in nanometer-scale
technologies. IEEE Journal on Emerging and Selected Topics in Circuits
and Systems 2011, 1 (1), 5−18.
(80) Berkooz, G.; Holmes, P.; Lumley, J. L. The proper orthogonal
decomposition in the analysis of turbulent flows. Annu. Rev. Fluid
Mech. 1993, 25 (1), 539−575.
(81) Monahan, A. H.; Fyfe, J. C.; Ambaum, M. H.; Stephenson, D.
B.; North, G. R. Empirical orthogonal functions: The medium is the
message. Journal of Climate 2009, 22 (24), 6501−6514.
(82) Lei, Y.; Lin, J.; He, Z.; Zuo, M. J. A review on empirical mode
decomposition in fault diagnosis of rotating machinery. Mechanical
systems and signal processing 2013, 35 (1−2), 108−126.
(83) Reddy, G. T.; Reddy, M. P. K.; Lakshmanna, K.; Kaluri, R.;
Rajput, D. S.; Srivastava, G.; Baker, T. Analysis of dimensionality
reduction techniques on big data. IEEE Access 2020, 8, 54776−54788.
(84) Voge, N. V.; Perera, R.; Mahapatra, S.; Gresh, L.; Balmaseda,
A.; Lorono-Pino, M. A.; Hopf-Jannasch, A. S.; Belisle, J. T.; Harris, E.;
Blair, C. D.; et al. Metabolomics-Based Discovery of Small Molecule
Biomarkers in Serum Associated with Dengue Virus Infections and
Disease Outcomes. PLoS Negl Trop Dis 2016, 10 (2), No. e0004449.
(85) Saddala, M. S.; Lennikov, A.; Huang, H. Discovery of Small-
Molecule Activators for Glucose-6-Phosphate Dehydrogenase
(G6PD) Using Machine Learning Approaches. Int. J. Mol. Sci. 2020,
21 (4), 1523.
(86) Sharmeen Jugreet, B.; Kouadio Ibrahime, S.; Zengin, G.;
Abdallah, H. H.; Fawzi Mahomoodally, M. GC/MS Profiling, In Vitro
and In Silico Pharmacological Screening and Principal Component
Analysis of Essential Oils from Three Exotic and Two Endemic Plants
from Mauritius. Chem. Biodivers 2021, 18 (3), No. e2000921.
(87) Li, Z.; Han, P.; You, Z. H.; Li, X.; Zhang, Y.; Yu, H.; Nie, R.;
Chen, X. In silico prediction of drug-target interaction networks based
on drug chemical structure and protein sequences. Sci. Rep 2017, 7
(1), 11174.
(88) Tharwat, A. Independent component analysis: An introduction.

Applied Computing and Informatics 2021, 17 (2), 222−249.
(89) Debrus, B.; Lebrun, P.; Kindenge, J. M.; Lecomte, F.; Ceccato,
A.; Caliaro, G.; Mbay, J. M.; Boulanger, B.; Marini, R. D.; Rozet, E.;
et al. Innovative high-performance liquid chromatography method
development for the screening of 19 antimalarial drugs based on a
generic approach, using design of experiments, independent
component analysis and design space. J. Chromatogr A 2011, 1218
(31), 5205−5215.
(90) Likas, A.; Vlassis, N.; Verbeek, J. J. The global k-means
clustering algorithm. Pattern recognition 2003, 36 (2), 451−461.
(91) Vattani, A. K-means requires exponentially many iterations
even in the plane. In Proceedings of the twenty-fifth annual symposium
on Computational geometry 2009, 324−332.
(92) Syarofina, S.; Bustamam, A.; Yanuar, A.; Sarwinda, D.;
Hermansyah, O. Cluster analysis in prediction of biological activity
and molecular structure relationship of dipeptidyl peptidase-4
inhibitors for the type two diabetes mellitus treatment. In AIP
Conference Proceedings; AIP Publishing LLC, 2020; Vol. 2264, p
030006.
(93) Nielsen, F. Hierarchical clustering. In Introduction to HPC with

MPI for Data Science; Springer, 2016; pp 195−211.

ACS Applied Bio Materials www.acsabm.org Review

https://doi.org/10.1021/acsabm.3c00054
ACS Appl. Bio Mater. 2024, 7, 657−684

683

https://doi.org/10.1016/j.chemolab.2015.06.016
https://doi.org/10.1016/j.chemolab.2015.06.016
https://doi.org/10.1186/1471-2105-12-390
https://doi.org/10.1186/1471-2105-12-390
https://doi.org/10.1016/j.asoc.2019.105524
https://doi.org/10.1016/j.asoc.2019.105524
https://doi.org/10.1214/009053607000000677
https://doi.org/10.1214/009053607000000677
https://doi.org/10.2174/138620708785739899
https://doi.org/10.2174/138620708785739899
https://doi.org/10.1002/minf.201600126
https://doi.org/10.1002/minf.201600126
https://doi.org/10.1109/MSPEC.1970.5213471
https://doi.org/10.1109/MSPEC.1970.5213471
https://doi.org/10.1002/wics.1198
https://doi.org/10.1007/s13721-021-00326-2
https://doi.org/10.1007/s13721-021-00326-2
https://doi.org/10.1007/s13721-021-00326-2
https://doi.org/10.1093/nar/gku293
https://doi.org/10.1093/nar/gku293
https://doi.org/10.1093/nar/gkz382
https://doi.org/10.1093/nar/gkz382
https://doi.org/10.1093/nar/gkz382
https://doi.org/10.1016/S0097-8485(01)00094-8
https://doi.org/10.1016/S0097-8485(01)00094-8
https://doi.org/10.1016/S0097-8485(01)00094-8
https://doi.org/10.1016/j.ces.2016.02.037
https://doi.org/10.1016/j.ces.2016.02.037
https://doi.org/10.1016/j.ces.2016.02.037
https://doi.org/10.1016/j.ces.2016.02.037
https://doi.org/10.1021/ci3000216?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ci3000216?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1109/34.709601
https://doi.org/10.1109/34.709601
https://doi.org/10.1038/s41598-021-93070-6
https://doi.org/10.1038/s41598-021-93070-6
https://doi.org/10.1007/s11095-018-2439-9
https://doi.org/10.1007/s11095-018-2439-9
https://doi.org/10.1021/acsinfecdis.2c00014?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsinfecdis.2c00014?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1109/TIT.1967.1053964
https://doi.org/10.1016/j.compbiolchem.2020.107269
https://doi.org/10.1016/j.compbiolchem.2020.107269
https://doi.org/10.1016/0169-7439(87)80084-9
https://doi.org/10.1016/0169-7439(87)80084-9
https://doi.org/10.1109/JETCAS.2011.2138250
https://doi.org/10.1109/JETCAS.2011.2138250
https://doi.org/10.1146/annurev.fl.25.010193.002543
https://doi.org/10.1146/annurev.fl.25.010193.002543
https://doi.org/10.1175/2009JCLI3062.1
https://doi.org/10.1175/2009JCLI3062.1
https://doi.org/10.1016/j.ymssp.2012.09.015
https://doi.org/10.1016/j.ymssp.2012.09.015
https://doi.org/10.1109/ACCESS.2020.2980942
https://doi.org/10.1109/ACCESS.2020.2980942
https://doi.org/10.1371/journal.pntd.0004449
https://doi.org/10.1371/journal.pntd.0004449
https://doi.org/10.1371/journal.pntd.0004449
https://doi.org/10.3390/ijms21041523
https://doi.org/10.3390/ijms21041523
https://doi.org/10.3390/ijms21041523
https://doi.org/10.1002/cbdv.202000921
https://doi.org/10.1002/cbdv.202000921
https://doi.org/10.1002/cbdv.202000921
https://doi.org/10.1002/cbdv.202000921
https://doi.org/10.1038/s41598-017-10724-0
https://doi.org/10.1038/s41598-017-10724-0
https://doi.org/10.1016/j.aci.2018.08.006
https://doi.org/10.1016/j.chroma.2011.05.102
https://doi.org/10.1016/j.chroma.2011.05.102
https://doi.org/10.1016/j.chroma.2011.05.102
https://doi.org/10.1016/j.chroma.2011.05.102
https://doi.org/10.1016/S0031-3203(02)00060-2
https://doi.org/10.1016/S0031-3203(02)00060-2
www.acsabm.org?ref=pdf
https://doi.org/10.1021/acsabm.3c00054?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

(94) Murtagh, F.; Contreras, P. Algorithms for hierarchical
clustering: an overview. Wiley Interdisciplinary Reviews: Data Mining
and Knowledge Discovery 2012, 2 (1), 86−97.
(95) Meunier, B.; Dumas, E.; Piec, I.; Béchet, D.; Hébraud, M.;
Hocquette, J. F. Assessment of hierarchical clustering methodologies
for proteomic data mining. J. Proteome Res. 2007, 6 (1), 358−366.
(96) Teles, H. R.; Ferreira, L. L. G.; Valli, M.; Coelho, F.;
Andricopulo, A. D. Hierarchical Clustering and Target-Independent
QSAR for Antileishmanial Oxazole and Oxadiazole Derivatives. Int. J.
Mol. Sci. 2022, 23 (16), 8898.
(97) Karimi, B.; Wai, H.-T.; Moulines, E.; Lavielle, M. On the global
convergence of (fast) incremental expectation maximization methods.
Advances in Neural Information Processing Systems 2019, 32, 2833−
2843.
(98) Do, C. B.; Batzoglou, S. What is the expectation maximization
algorithm? Nat. Biotechnol. 2008, 26 (8), 897−899.
(99) Sammaknejad, N.; Zhao, Y.; Huang, B. A review of the
expectation maximization algorithm in data-driven process identi-
fication. Journal of process control 2019, 73, 123−136.
(100) Wei, X.; Yang, J.; Li, S.; Li, B.; Chen, M.; Lu, Y.; Wu, X.;
Cheng, Z.; Zhang, X.; Chen, Z.; et al. TAIGET: A small-molecule
target identification and annotation web server. Front Pharmacol
2022, 13, 898519.
(101) Chuang, L.-Y.; Tsai, J.-H.; Yang, C.-H. Operon prediction
using particle swarm optimization and reinforcement learning. In
2010 International Conference on Technologies and Applications of
Artificial Intelligence; IEEE, 2010: pp 366−372.
(102) Sahba, F.; Tizhoosh, H. R.; Salama, M. M. Application of
reinforcement learning for segmentation of transrectal ultrasound
images. BMC Med. Imaging 2008, 8, 8.
(103) Lampe, T.; Fiederer, L. D.; Voelker, M.; Knorr, A.; Riedmiller,
M.; Ball, T. A brain-computer interface for high-level remote control
of an autonomous, reinforcement-learning-based robotic system for
reaching and grasping. In Proceedings of the 19th international
conference on Intelligent User Interfaces 2014, 83−88.
(104) Popova, M.; Isayev, O.; Tropsha, A. Deep reinforcement
learning for de novo drug design. Sci. Adv. 2018, 4 (7), No. eaap7885.
(105) Gottipati, S. K.; Sattarov, B.; Niu, S.; Pathak, Y.; Wei, H.; Liu,
S.; Blackburn, S.; Thomas, K.; Coley, C.; Tang, J. Learning to navigate
the synthetically accessible chemical space using reinforcement
learning. In International Conference on Machine Learning; PMLR,
2020; pp 3668−3679.
(106) Pandey, M.; et al. The transformational role of GPU
computing and deep learning in drug discovery. Nature Machine
Intelligence 2022, 4 (3), 211−221.
(107) Watson, O.; Cortes-Ciriano, I.; Watson, J. A. A semi-
supervised learning framework for quantitative structure-activity
regression modelling. Bioinformatics 2021, 37 (3), 342−350.
(108) Migdadi, L.; Lambert, J.; Telfah, A.; Hergenroder, R.; Wohler,
C. Automated metabolic assignment: Semi-supervised learning in
metabolic analysis employing two dimensional Nuclear Magnetic
Resonance (NMR). Comput. Struct Biotechnol J. 2021, 19, 5047−
5058.
(109) Bahi, M.; Batouche, M. Drug-target interaction prediction in
drug repositioning based on deep semi-supervised learning. In IFIP
International Conference on Computational Intelligence and Its
Applications; Springer, 2018; pp 302−313.
(110) Zou, J.; Han, Y.; So, S.-S. Overview of artificial neural
networks. Artificial Neural Networks 2008, 458, 14−22.
(111) Sarker, I. H. Deep Learning: A Comprehensive Overview on
Techniques, Taxonomy, Applications and Research Directions. SN
Comput. Sci. 2021, 2 (6), 420.
(112) Karim, A.; Mishra, A.; Newton, M. A. H.; Sattar, A. Efficient
toxicity prediction via simple features using shallow neural networks
and decision trees. Acs Omega 2019, 4 (1), 1874−1888.
(113) Tan, C.; Sun, F.; Kong, T.; Zhang, W.; Yang, C.; Liu, C. A
survey on deep transfer learning. In International conference on artificial
neural networks; Springer, 2018; pp 270−279.

(114) Ribani, R.; Marengoni, M. A survey of transfer learning for
convolutional neural networks. In 2019 32nd SIBGRAPI conference on
graphics, patterns and images tutorials (SIBGRAPI-T); IEEE, 2019; pp
47−57.
(115) Ciresan, D. C.; Meier, U.; Schmidhuber, J. Transfer learning
for Latin and Chinese characters with deep neural networks. In The
2012 international joint conference on neural networks (IJCNN); IEEE,
2012; pp 1−6.
(116) Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.;
Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Zidek, A.;
Potapenko, A.; et al. Highly accurate protein structure prediction
with AlphaFold. Nature 2021, 596 (7873), 583−589.
(117) Gómez-Bombarelli, R.; Wei, J. N.; Duvenaud, D.; Hernández-
Lobato, J. M.; Sánchez-Lengeling, B.; Sheberla, D.; Aguilera-
Iparraguirre, J.; Hirzel, T. D.; Adams, R. P.; Aspuru-Guzik, A.
Automatic Chemical Design Using a Data-Driven Continuous
Representation of Molecules. ACS Cent Sci. 2018, 4 (2), 268−276.
(118) Ostmeyer, J.; Cowell, L. Machine Learning on Sequential Data
Using a Recurrent Weighted Average. Neurocomputing 2019, 331,
281−288.
(119) Schapire, R. E. The strength of weak learnability. Machine

learning 1990, 5 (2), 197−227.
(120) Ferreira, A. J.; Figueiredo, M. A. Boosting algorithms: A
review of methods, theory, and applications. Ensemble machine
learning 2012, 35−85.
(121) Bentéjac, C.; Csörgo, A.; Martínez-Muñoz, G. A comparative
analysis of gradient boosting algorithms. Artificial Intelligence Review
2021, 54 (3), 1937−1967.
(122) Schapire, R. E. Explaining adaboost. In Empirical inference;
Springer, 2013; pp 37−52.
(123) Moinul, M.; Amin, S. A.; Kumar, P.; Patil, U. K.; Gajbhiye, A.;
Jha, T.; Gayen, S. Exploring sodium glucose cotransporter (SGLT2)
inhibitors with machine learning approach: A novel hope in anti-
diabetes drug discovery. J. Mol. Graph Model 2022, 111, 108106.
(124) Grimberg, H.; Tiwari, V. S.; Tam, B.; Gur-Arie, L.; Gingold,
D.; Polachek, L.; Akabayov, B. Machine learning approaches to
optimize small-molecule inhibitors for RNA targeting. J. Cheminform
2022, 14 (1), 4.
(125) Wani, M. A.; Roy, K. K. Development and validation of
consensus machine learning-based models for the prediction of novel
small molecules as potential anti-tubercular agents. Mol. Divers 2022,
26 (3), 1345−1356.
(126) Ramezan, C. A.; Warner, T. A.; Maxwell, A. E. Evaluation of
sampling and cross-validation tuning strategies for regional-scale
machine learning classification. Remote Sensing 2019, 11 (2), 185.
(127) Tian, Y.; Zhang, Y. A comprehensive survey on regularization
strategies in machine learning. Information Fusion 2022, 80, 146−166.
(128) Wambaugh, M. A.; Shakya, V. P. S.; Lewis, A. J.; Mulvey, M.
A.; Brown, J. C. S. High-throughput identification and rational design
of synergistic small-molecule pairs for combating and bypassing
antibiotic resistance. PLoS Biol. 2017, 15 (6), No. e2001644.
(129) Ma, Y.; Mou, Q.; Zhu, X.; Yan, D. Small molecule nanodrugs
for cancer therapy. Materials today chemistry 2017, 4, 26−39.
(130) Deng, J.; Feng, E.; Ma, S.; Zhang, Y.; Liu, X.; Li, H.; Huang,
H.; Zhu, J.; Zhu, W.; Shen, X.; et al. Design and synthesis of small
molecule RhoA inhibitors: a new promising therapy for cardiovascular
diseases? J. Med. Chem. 2011, 54 (13), 4508−4522.
(131) Ishihara, K.; Sakakura, A.; Hatano, M. Design of highly
functional small-molecule catalysts and related reactions based on
acid-base combination chemistry. Synlett 2007, 2007 (05), 0686−
0703.

ACS Applied Bio Materials www.acsabm.org Review

https://doi.org/10.1021/acsabm.3c00054
ACS Appl. Bio Mater. 2024, 7, 657−684

684

https://doi.org/10.1002/widm.53
https://doi.org/10.1002/widm.53
https://doi.org/10.1021/pr060343h?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/pr060343h?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.3390/ijms23168898
https://doi.org/10.3390/ijms23168898
https://doi.org/10.48550/arXiv.1910.12521
https://doi.org/10.48550/arXiv.1910.12521
https://doi.org/10.1038/nbt1406
https://doi.org/10.1038/nbt1406
https://doi.org/10.1016/j.jprocont.2018.12.010
https://doi.org/10.1016/j.jprocont.2018.12.010
https://doi.org/10.1016/j.jprocont.2018.12.010
https://doi.org/10.3389/fphar.2022.898519
https://doi.org/10.3389/fphar.2022.898519
https://doi.org/10.1186/1471-2342-8-8
https://doi.org/10.1186/1471-2342-8-8
https://doi.org/10.1186/1471-2342-8-8
https://doi.org/10.1145/2557500.2557533
https://doi.org/10.1145/2557500.2557533
https://doi.org/10.1145/2557500.2557533
https://doi.org/10.1126/sciadv.aap7885
https://doi.org/10.1126/sciadv.aap7885
https://doi.org/10.1145/2557500.2557533-x
https://doi.org/10.1145/2557500.2557533-x
https://doi.org/10.1093/bioinformatics/btaa711
https://doi.org/10.1093/bioinformatics/btaa711
https://doi.org/10.1093/bioinformatics/btaa711
https://doi.org/10.1016/j.csbj.2021.08.048
https://doi.org/10.1016/j.csbj.2021.08.048
https://doi.org/10.1016/j.csbj.2021.08.048
https://doi.org/10.1007/978-1-60327-101-1_2
https://doi.org/10.1007/978-1-60327-101-1_2
https://doi.org/10.1007/s42979-021-00815-1
https://doi.org/10.1007/s42979-021-00815-1
https://doi.org/10.1021/acsomega.8b03173?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsomega.8b03173?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsomega.8b03173?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1038/s41586-021-03819-2
https://doi.org/10.1038/s41586-021-03819-2
https://doi.org/10.1021/acscentsci.7b00572?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acscentsci.7b00572?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.neucom.2018.11.066
https://doi.org/10.1016/j.neucom.2018.11.066
https://doi.org/10.1007/BF00116037
https://doi.org/10.1007/978-1-4419-9326-7_2
https://doi.org/10.1007/978-1-4419-9326-7_2
https://doi.org/10.1007/s10462-020-09896-5
https://doi.org/10.1007/s10462-020-09896-5
https://doi.org/10.1016/j.jmgm.2021.108106
https://doi.org/10.1016/j.jmgm.2021.108106
https://doi.org/10.1016/j.jmgm.2021.108106
https://doi.org/10.1186/s13321-022-00583-x
https://doi.org/10.1186/s13321-022-00583-x
https://doi.org/10.1007/s11030-021-10238-y
https://doi.org/10.1007/s11030-021-10238-y
https://doi.org/10.1007/s11030-021-10238-y
https://doi.org/10.3390/rs11020185
https://doi.org/10.3390/rs11020185
https://doi.org/10.3390/rs11020185
https://doi.org/10.1016/j.inffus.2021.11.005
https://doi.org/10.1016/j.inffus.2021.11.005
https://doi.org/10.1371/journal.pbio.2001644
https://doi.org/10.1371/journal.pbio.2001644
https://doi.org/10.1371/journal.pbio.2001644
https://doi.org/10.1016/j.mtchem.2017.01.004
https://doi.org/10.1016/j.mtchem.2017.01.004
https://doi.org/10.1021/jm200161c?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jm200161c?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jm200161c?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1055/s-2007-970776
https://doi.org/10.1055/s-2007-970776
https://doi.org/10.1055/s-2007-970776
www.acsabm.org?ref=pdf
https://doi.org/10.1021/acsabm.3c00054?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

