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Crop yield potential is intrinsically related to canopy photosynthesis; therefore, improving canopy 
photosynthetic efficiency is a major focus of current efforts to enhance crop yield. Canopy photosynthesis 
rate (Ac) is influenced by several factors, including plant architecture, leaf chlorophyll content, and 
leaf photosynthetic properties, which interact with each other. Identifying factors that restrict canopy 
photosynthesis and target adjustments to improve canopy photosynthesis in a specific crop cultivar pose 
an important challenge for the breeding community. To address this challenge, we developed a novel 
pipeline that utilizes factorial analysis, canopy photosynthesis modeling, and phenomics data collected 
using a 64-camera multi-view stereo system, enabling the dissection of the contributions of different 
factors to differences in canopy photosynthesis between maize cultivars. We applied this method to 2 
maize varieties, W64A and A619, and found that leaf photosynthetic efficiency is the primary determinant 
(17.5% to 29.2%) of the difference in Ac between 2 maize varieties at all stages, and plant architecture at 
early stages also contribute to the difference in Ac (5.3% to 6.7%). Additionally, the contributions of each 
leaf photosynthetic parameter and plant architectural trait were dissected. We also found that the leaf 
photosynthetic parameters were linearly correlated with Ac and plant architecture traits were non-linearly 
related to Ac. This study developed a novel pipeline that provides a method for dissecting the relationship 
among individual phenotypes controlling the complex trait of canopy photosynthesis.

Introduction

Increasing energy conversion efficiency at the canopy level is 
regarded as one of the most important options to increase bio-
mass and crop yield potential [1]. Canopy is the aboveground 
part of plants, and gas exchange measurements indicate that 
canopy photosynthesis rate is correlated with biomass produc-
tion and crop yield potential [2–6]. Factors that determine the 
canopy photosynthesis of crops grown under non-stress con-
ditions include leaf photosynthesis efficiency, canopy architec-
ture, and leaf chlorophyll content [7], which are important 
targets for breeding programs [8–10]. As these factors interact 
with each other, canopy photosynthesis is a complex quantita-
tive trait. Experiments under FACE (free air CO2 enrichment) 
have shown that increasing photosynthesis can increase bio-
mass and crop yield potential [11,12]. However, there are con-
tradictory evidences suggesting that leaf photosynthesis might 
not necessarily be related to crop yield, especially when the 
canopy architecture and other yield-related traits are changed 
simultaneously with the changes in leaf photosynthesis [13–15]. 
Canopy architecture, which determines light interception and 
distribution in a canopy [16], plays a crucial role in canopy 

photosynthesis; e.g., erect leaves reduce the shading of lower- 
layer leaves, and larger leaf area increases the amount of inter-
cepted light by a canopy [17,18]. Leaf chlorophyll content varies 
greatly among cultivars and affects not only light absorbance 
but also the photosynthetic efficiency of a leaf [19]. Given these 
factors and their interactions that control canopy photosynthe-
sis change dynamically, the factor that restricts canopy photo-
synthesis may shift during the growing season. Accurate 
identification of the factors controlling photosynthetic effi-
ciency at different stages is essential for efforts to improve pho-
tosynthesis and achieve greater yield [20,21].

There are large genetic variations in maize leaf photosyn-
thesis [22]. So far, large-scale phenotyping and genetic studies 
on leaf photosynthesis have been conducted in rice, poplar, 
wheat, and other crops [23–25]. However, the study of the 
genetic mechanism of canopy photosynthesis is limited due to 
a lack of dissecting methods for canopy photosynthesis, par-
ticularly in terms of calculating the contributions of each trait 
to canopy photosynthesis.

Computational models have been developed to calculate 
canopy photosynthesis for several crops, such as maize [26,27], 
wheat [28,29], rice [30–33], soybean [34], sugarcane [35], and 
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sweet pepper [36]. These models have aided in the study of 
various physiological questions, including light use efficiency, 
ideal plant type, optimal planting densities, and the theoretical 
creation of virtual super cultivars. We have previously devel-
oped a method that uses combinatorial factorial analysis to 
dissect the contribution of different environmental factors and 
physiological and architectural traits on canopy photosynthesis 
for soybean and rice [34,37]. For example, this analysis reveals 
that at different developmental stages, different features are 
required to achieve higher photosynthetic efficiency; e.g., at the 
tillering stage, increasing leaf area index (LAI) is preferred, 
while at the young panicle differentiation stage, increasing LAI 
decreases canopy photosynthesis [37].

However, building 3D canopy photosynthesis models for 
the target plants is time-consuming, and the 3D models devel-
oped based on manual [32,33] or semi-automatic image-based 
measurements [31] still have limited throughput. Canopy mod-
els can also be constructed using point cloud, which can be 
acquired using Light Detection and Ranging (LiDAR), depth 
camera or time-of-flight camera, or multi-view stereo-derived 
point clouds based on images captured from multiple views 
[38–41].

In this study, we developed a novel 3D canopy modeling 
pipeline consisting of a custom-designed 64-camera multi-view 
stereo system, ray tracing, and a leaf photosynthetic model for 
the dissection of major contributions of canopy photosynthesis 
between cultivars. Specifically, we dissected the contributions 
of plant architecture, leaf absorbance, and leaf photosynthetic 
capacity.

Materials and Methods

Plant materials
Maize (Zea mays L.) inbred lines, A619 and W64A, were cul-
tivated in Songjiang experimental station in Shanghai (30°56' N, 
121°8' E) on 2020 July 20. The plants were grown in 21-L pots 
with four 6-mm-diameter holes at the bottom to facilitate the 
drainage of excess water. The bottom layer of the pots was filled 
with 1 l of ceramsite, followed by 20 l of mixed soil (garden 
soil:peat soil:vermiculite = 5:3:2 by volume). Prior to sowing, 
20 g of urea and 20 g of N-P-K compound fertilizer (a total of 
12.2 g of N, 3 g of P2O5, and 3 g of K2O per pot) were applied. 
The pots were placed in direct sunlight and irrigation was per-
formed as necessary during the growing season.

The new pipeline of 3D canopy modeling
The pipeline includes several steps, including (1) image collec-
tion, (2) point cloud reconstruction and segmentation, (3) 
single plant vector model and mesh model development, (4) 
building virtual canopy models and ray tracing, and (5) canopy 
photosynthesis calculation and dissection (Fig. 1).

Step 1. In this study, we used a custom-designed multi-view 
stereo system, MVS64, to collect images of plant grown in pots.

Step 2. Point cloud was reconstructed with software Agisoft 
Metashape with an input of the 64 images collected from 
MVS64. Point cloud denoising and segmentation was per-
formed to separate leaves and stem. All leaves were numbered 
by 1, 2, 3, etc. Those leaves that were lower than the center of 
the plant were defined as lower layer leaves and were labeled 
with 1; those leaves that were higher than the center of the 
plant were defined as up layer leaves and were labeled with 
2. The maize single plant segmented point cloud was built.

Step 3. Based on the segmented point cloud data, a vector 
model was constructed. The leaves in the vector model were 
presented as vectors, in which it is easy to adjust the leaf length, 
leaf width, leaf angle, etc. Using the vector model, a series of 
virtual plant mesh models were generated.

Step 4. A canopy model was built based on the single plant 
mesh model, and ray tracing simulation was performed with 
the FastTracer software.

Step 5. A leaf photosynthetic light response curve was used 
to calculate the photosynthesis of every leaf triangle facet, and 
the canopy photosynthesis was calculated. Sensitivity analysis 
and factorial dissection analysis were carried out.

More details of the above steps are shown as follows.

Development of a 64-camera multi-view  
stereo system
A new phenotyping platform (Fig. 1A and a video in the 
Supplementary Materials) was developed for instantaneous phe-
notyping of plant architectures for the construction of canopy 
models. The platform includes 64 cameras (EOS 1300D DSLR, 
Canon, Inc., Tokyo, Japan), 8 terminal controllers, 4 computer 
nodes, and one host computer. All the cameras, terminal con-
trollers and computer nodes are installed on a mechanical skel-
eton (Fig. 1A). There is a cross marker on the ground showing 
the center of the platform. The mechanical skeleton is fixed on 
the floor and ceiling of the room for stabilization. Four flash 
lamps are used during photographing. To obtain a uniform and 
stable light environment, the platform is surrounded by curtains 
and the floor is covered by material that scatters light. A maize 
plant grown in a pot was moved to the center of the platform 
and all the 64 cameras took images simultaneously. The cameras 
are controlled by the host computer. The host computer connects 
with 4 nodes of computers, each of which links 2 terminal con-
trollers. One terminal controller links 8 cameras, which are 
located at 4 different heights. The phenotyping platform is oper-
ated with software installed on the host computer.

Point cloud calculation and pre-processing
Images from the phenotyping platform are used to generate 
dense point clouds by the software Agisoft Metashape Pro-
fessional Edition (Agisoft LLC, St. Petersburg, Russia; version 
1.6.1). The point clouds data include the information of X–Y–Z 
coordinates, color (RGB), and normal vector (of the object surface, 
such as a leaf or a stem) of the points. Noise points were removed 
with a series of processes with the point cloud toolkit in 
MATLAB (R2020b, MathWorks, USA). The soil plane is extracted 
by the function pcfitplane with the parameter of allowable dis-
tance 5 cm. Point clouds are further denoised with the pcsegdist 
(threshold of Euclidean distance 5 mm) and pcdenoise function 
(threshold of standard deviation 0.3 away from the averaged 
distance of between each point and its nearest 50 neighbors). 
To verify the accuracy of 3D point clouds acquired from the 
multi-view stereo system, we used LiDAR (FARO S70 series) 
with an accuracy of 1 mm to scan plants for point clouds.

Plant organ segmentation and architectural 
parameter extraction
The method presented by Liu et al. [42] for plant organ seg-
mentation is employed to segment each leaf from the stem. 
The method is a combination of a skeleton extraction algo-
rithm and a region growing algorithm, which has been proven 
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to be effective for maize by Liu et al. [43]. The algorithm con-
sists of 3 major parts, (a) extracting the leaf skeleton, (b) clas-
sifying the point cloud into clusters, and (c) merging unknown 
clusters. Once all leaves are separated from the stem, the 

architectural traits of the leaves are extracted using the method 
described [42]. The extracted leaf architectural traits include 
leaf length, leaf width, leaf base height, and leaf area. The leaf 
area was calculated as the summation of mesh area of a leaf. 

Fig. 1. The pipeline of 3D canopy modeling. The pipeline includes several steps, including (A) image collection with an MVS64 system, (B) point cloud reconstruction and 
segmentation, (C) a single plant vector model was built based on the segmented point cloud and mesh models of virtual plants were developed, (D) building canopy models 
and ray tracing, and (E) canopy photosynthesis calculation, sensitivity analysis, and factorial dissection.
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The calculated leaf area was compared with the leaf area deter-
mined using an empirical model [44], which takes into 
account leaf length and width. To evaluate the extracted traits, 
R2 and RMSE are calculated based on measured data.

Development of a 3D vector model for leaves based 
on point cloud data
To adjust length, width, angle, and curvature of the leaves, we 
developed a 3D vector model based on the point cloud. First, 
the Dijkstra algorithm was used to calculate the main path of 
a leaf from the leaf base to tip. Next, a series of planes were 
selected to cut the leaf into sections in order to detect its edges. 
Finally, vectors representing the length of the leaf were defined 
using the points along the main path from the leaf base to the 
tip, and vectors representing the width of the leaf were defined 
using the points between the leaf 's central vein and its edges. 
We multiplied the vectors representing leaf length by a factor 
to adjust its length. Similarly, to adjust the leaf width, we mul-
tiplied the vectors representing leaf width by a factor.

Building 3D canopy model based on point cloud data
Point clouds of a single plant are converted into mesh models 
and used for constructing virtual canopies (Fig. 1C). The Crust 
method [45] was used for triangulation and then abnormal 
facets (or triangles) are filtered with a statistical method used 
in a previous study [43]. Each canopy model is built with 4 
different individual plants, and the data of the 4 plants are used 
repeatedly. One canopy model includes 4 rows with a 55-cm 
distance between rows and 13 plants per row with a 15-cm 
distance between plants.

Simulating light distribution with ray  
tracing algorithm
The light distribution in the canopy model is simulated with 
ray tracing algorithm using the software FastTracer [32]. In 
the model, the center area of 110 cm × 75 cm (2 rows ×  
5 plants/row) is used for ray tracing simulation and canopy 
photosynthesis calculation to avoid boundary effect (Fig. 1D). 
The meta information including date and location are used as 
input to the software. In a ray tracing algorithm for a particular 
canopy, the leaf reflectance (R) and transmittance (T) need to 
be parameterized. The parameterization is based on the rela-
tionships between the SPAD values measured with SPAD502Plus 
(Konica Minolta, Japan), which represents leaf chlorophyll 
concentration [46], and R and T. The R and T values are cal-
culated for photosynthetic active radiation (PAR) of solar light 
with Eqs. 1 and 2 [47]. In these equations, the Ri, Ti, and Ii are 
reflectance, transmittance, and incident light, respectively, at 
wavelength i. A spectrometer and an integrating sphere (Ocean 
Optics, Dunedin, FL, USA) are used for the measurement of 
Ri and Ti.

The incident light is predicted with a climate model and the 
direct PPFD and diffuse PPFD are predicted based on an atmos-
phere transmittance of 0.7.

Calculation of canopy photosynthesis rate
The classic non-rectangular hyperbola leaf photosynthesis 
model (Eq. 3) [48] is used to calculate the photosynthetic CO2 
assimilation rate for every triangle of individual leaves in a 
canopy model according to the absorbed PAR by each triangle 
(Fig. 1E). A is the leaf photosynthesis rate and I is the incident 
photosynthetic photon flux density. Pmax is the leaf photosyn-
thetic CO2 assimilation rate under saturated light. ϕ is the 
quantum yield of CO2 assimilation. θ is the curve convexity, 
which describes the sharpness of the transition in the light 
response curve. The leaf photosynthesis model (Eq. 3) was 
parameterized by fitting the light response curves of photosyn-
thesis measured with a leaf gas exchange system LI-6400XT 
(LI-COR, Lincoln, NE, USA). The fitting results are shown in 
Table S1. The top and bottom layer leaves were measured sep-
arately, and 2 models were used to represent them because of 
the physiological differences between the top and bottom layer’s 
leaves. The measurements were done under a reference CO2 
concentration of 400 μmol mol−1 and photosynthetic photon 
flux density (PPFD) changing from high light to low light with 
2-min intervals (2,000, 1,500, 1,000, 800, 600, 400, 300, 200, 
150, 100, 50, and 0 μmol·m−2·s−1).

The canopy photosynthesis rate equals the sum of all leaf pho-
tosynthesis rates multiplied by leaf area. The diurnal canopy 
photosynthesis rate is calculated based on the simulated light 
environments on an hourly interval (Fig. 1E).

Dissection of factors controlling  
canopy photosynthesis
The algorithm of dissection analysis follows Refs. [34,37]. The 
difference of canopy photosynthetic CO2 uptake rate (Ac) 
between 2 lines (or 2 cultivars) can be attributed to 3 different 
traits, e.g., canopy structure, chlorophyll content, and leaf 
photosynthesis (Eqs. 4 to 10). The Ac(X) represents the Ac 
with trait X from A619 and the others from W64A, e.g., Ac(S) 
is the Ac with trait S (canopy architecture) from A619 and the 
other traits from W64A. The symbol O represents the control 
canopy model, the symbol S represents the canopy model 
with replaced 3D canopy structure, P represents the canopy 
model with replaced leaf photosynthesis, C represents the 
canopy model with replaced leaf chlorophyll contents. c(X) 
represents the contribution of trait X. The difference of Ac(S) 
and Ac(O), (Ac(S) − Ac(O)), is the contribution of the 3D 
canopy model to the canopy photosynthesis. Similarly, Ac(S, P) 
represents the canopy photosynthesis rate of the canopy 
model with trait S and P from A619 and the other traits from 
W64A; Ac(S, P, C) represents canopy model with all the trait 
S, P, and C from A619.

(1)R =

Σ
700

i=400
Ri ∗ Ii

Σ
700

i=400
Ii

(2)T =

Σ
700

i=400
Ti ∗ Ii

Σ
700

i=400
Ii

(3)A=

�I+Pmax−

√

(�I+Pmax)
2−4��IPmax

2�
−Rd

(4)Ac(S) − Ac(O) = c (S)

(5)Ac(P) − Ac(O) = c (P)
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The 3D structural parameters, leaf photosynthesis, and leaf 
SPAD values of the 2 inbred lines, e.g., W64A and A619, were 
measured. With these data, we built a series of virtual canopy 
models using different combinations of the 3 traits from the 2 
inbred lines. All the Ac(S), Ac(P), Ac(C), Ac(S, P), Ac(S, C), Ac(P, 
C), Ac(S, P, C), and Ac(O) can be calculated with canopy models. 
Then, the contributions of individual traits and interactions 
between 2 traits or among 3 traits are derived from the follow-
ing equations (Eqs. 11 to 17).

To better understand the contribution of these individual features 
and their interactions to canopy photosynthetic CO2 uptake rate, 
we calculated these contributions (e.g., c(S), c(P)) to the canopy 
photosynthetic CO2 uptake rate of W64A at each stage, respec-
tively. The contributions are converted from their absolute values 
to relative values representing the proportion of Ac increase by 
replacing features of W64A by features from A619.

Results

The accurate assessment of point cloud data 
from MVS64 using LiDAR and measured plant 
architectural data
The study aimed to construct a 3D canopy structure model by 
the point clouds for individual plants of 2 inbred lines, W64A 

and A619, at 5 stages: 31st, 38th, 45th, 52nd, and 59th days 
after sowing (DAS). The point clouds were computed with the 
structure-from-motion and multi-view stereo (SFM-MVS) 
method (Fig. 1A). The images were taken by an MVS system 
composed of 64 cameras (MVS64) simultaneously from 64 views 
(Fig. 1A). We evaluated the accuracy of point cloud using LiDAR 
on the same day that the images were taken, following the 
method of previous studies [40,41] (Fig. 2A and B). The point 
cloud acquired from the MVS64 was matched to the point cloud 
obtained from LiDAR and the median distance between the 
2 clouds is 3 mm (Fig. 2C). This comparison demonstrated that 
the SFM-MVS method accurately obtained the point cloud and 
can be utilized for extracting plant architectural parameters.

Furthermore, we compared the extracted plant architectural 
traits (i.e., leaf base height, leaf length, leaf width, and leaf area) 
with the measured data (Fig. 2D to K). The extracted leaf base 
height displayed substantial correlation with the measured data 
(R2 = 0.972, RMSE = 4.262 for W64A and R2 = 0.963, RMSE = 
4.114 for A619). The extracted leaf length is correlated with the 
measured leaf length (R2 = 0.925, RMSE = 3.232 for W64A and 
R2 = 0.824, RMSE = 4.297 for A619). The RMSE for leaf width 
was RMSE = 0.742 cm for W64A and RMSE = 0.666 cm for 
A619, indicating the high accuracy of leaf width extraction 
from the point cloud. Nonetheless, the correlation coefficient 
(R2) between the extracted and measured leaf width (R2 = 0.789 
for W64A, R2 = 0.691 for A619) was not as high as it was for 
leaf length and leaf base height. The leaf area was estimated 
from the measured leaf length and leaf width. The correlations 
between extracted and measured leaf area were moderate (R2 = 
0.876, RMSE = 38.442 for W64A and R2 = 0.835, RMSE = 
44.888 for A619) (Fig. 2D to K). Table 1 presents the results of 
linear fitting.

Variation of plant architecture, chlorophyll content, 
and leaf photosynthetic efficiency between 2 maize 
inbred lines at 5 stages
To understand the contributions of different traits to the can-
opy photosynthesis for the 2 maize lines W64A and A619, we 
measured the major traits influencing canopy photosynthesis, 
i.e., plant architecture, leaf optics, and leaf photosynthesis. 
Firstly, the plant architecture was dramatically different bet-
ween the 2 lines (Fig. 3A). The 3D point clouds were acquired 
(Fig. 3A) with the structure from motion (SFM) approach with 
the new phenotyping platform developed in this study (Fig. 
1A and B). We also measure the plant architectural traits man-
ually. Leaf number of W64A was not significantly different 
from A619 at the first stage (31 DAS), but significantly higher 
than A619 at the other stages (P < 0.01 for 38, 45, and 52 DAS) 
(Fig. 3B). The stem height of the 2 inbred lines was not signif-
icantly different (Fig. 3C). The average and maximal leaf 
length of A619 was significantly longer than W64A at mature 
stages (P < 0.01 for 45 and 52 DAS) (Fig. 3D and E). There was 
no significant difference in leaf width between the 2 lines (Fig. 
3F and G).

Leaf chlorophyll content of all the leaves in one plant was 
measured with a chlorophyll meter, SPAD, and the averaged 
SPAD values of all leaves of A619 are significantly lower than 
W64A at the first 2 stages (P < 0.01 for 31 and 38 DAS) (Fig. 
3J). To calculate the leaf reflectance and transmittance for 
parameterizing ray tracing algorithm, we measured the rela-
tionship between SPAD with reflectance and transmittance. 

(6)Ac(C) − Ac(O) = c (C)

(7)Ac(S, P) − Ac(O) = c (S) + c (P) + c (SP)

(8)Ac(S, C) − Ac(O) = c (S) + c (C) + c (SC)

(9)Ac(P, C) − Ac(O) = c (P) + c (C) + c (PC)

(10)
Ac(S, P, C)−Ac(O)= c (S)+c (P)+c (C)+

c (SP)+c (SC)+c (PC)+c (SPC)

(11)c (S) = Ac(S) − Ac(O)

(12)c (P) = Ac(P) − Ac(O)

(13)c (C) = Ac(C) − Ac(O)

(14)c (C) = Ac(C) − Ac(O)

(15)c (SC)=Ac(S, C)−Ac(S)−Ac(C)+Ac(O)

(16)c (SC) = Ac(S, C) − Ac(S) − Ac(C) + Ac(O)

(17)
c (SPC)=Ac(S,P,C)−Ac(O)+Ac(S)+

Ac(P)+Ac(C)−Ac(S,P)−Ac(S)C)−Ac(P,C)
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The relationship between leaf transmittance (t) and SPAD 
for A619 and W64A together was fitted with a quadratic 
model (Eq. 1, R2 = 0.9943) (Fig. 3H). The relationship between 
leaf reflectance (rA619 and rW64A) and SPAD was fitted with a 

quadratic model of A619 (Eq. 2, R2 = 0.9809) and a linear 
model for W64A (Eq. 3, R2 = 0.7482) (Fig. 3I).

(18)t = 0.006319 ∗ SPAD
2
− 0.8241 ∗ SPAD + 29.49

Fig. 2. Validation of point cloud accuracy and extracted parameters with LiDAR and manually measured data. (A and B) The setup of the LiDAR device and a diagram showing 
the method of scanning multiple plants simultaneously. The LiDAR device was moved between different positions, and at positions 1, 2, and 3, the LiDAR scanned from 0° 
to 120°; at position 4, the LiDAR scanned from 0° to 360°. (C) Alignment between LiDAR point cloud and SFM-MVS point cloud. The point cloud of SFM-MVS includes R-G-B 
color information while the point cloud of LiDAR has no color information. The color of the overlap figures shows distance between 2 point clouds. (D to K) The correlation 
between calculated plant architectural traits and measured data. These traits include leaf base height (D and H), leaf length (E and I), and leaf width (F and J). The correlation 
between calculated leaf area from point cloud and reference leaf area calculated with commercial software (G and K). Data in (D) to (G) are from line W64A and those in 
(H) to (K) are from line A619.
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With these relationships, the transmittance and reflectance of 
each leaf were calculated. The averaged leaf transmittance and 
reflectance of A619 were significantly higher than those of 
W64A at 31 and 38 DAS, but not significantly different at 45, 
52, and 59 DAS (Fig. 3K and L).

The light response curves of the leaf photosynthesis rate 
show that, for up layer leaves, A619 had a higher leaf photo-
synthetic rate (A) than W64A under most light levels (P < 0.05) 
(Fig. 3M). The P values of statistical analysis are shown in Table 
S2. For bottom layer leaves, A of A619 was higher than W64A 
at the 38th DAS under most light levels (P < 0.05) (Table S2), 
but not significantly different at the other stages (45, 52, and 
59 DAS) under most light levels (Table S2). Furthermore, we 
compared the leaf photosynthetic CO2 assimilation rate (Asat) 
under saturated light conditions (PPFD = 1,200 μmol m−2 s−1). 
The Asat of A619 was significantly higher than that of W64A 
for up layer leaves at all 5 stages (Fig. 3N), while the difference 
of Asat for bottom layer leaves was not significant (Fig. 3O). The 
quantum yield of CO2 assimilation (ΦCO2), which is the initial 
slope of the light response curve, was quantified by linear fitting 
the data measured under PPFD below 200 μmol m−2 s−1. The 
ΦCO2 of A619 was significantly higher than that of W64A for 
both up and bottom layers at all 5 stages (Fig. 3P and Q).

Although the difference of these traits between the 2 maize 
lines can be measured, their contribution to canopy photosyn-
thesis is still not known and which trait is the major factor 
controlling the difference of canopy photosynthesis between 
the 2 lines is not clear.

Influences of photosynthetic and architectural 
traits on canopy photosynthesis in 2 maize varieties 
explored using 3D canopy models
We constructed 3D canopy models for 2 maize varieties using 
the data obtained to investigate how the traits measured above 
influence canopy photosynthesis. Using the models, we propor-
tionally adjusted each parameter of the leaf photosynthetic light 
response curve (Pmax, ϕ,·θ, and Rd) by a range of 0.6 to 1.4 to 

determine their effect on daily total canopy photosynthetic CO2 
uptake (Ac,d). Simulation results show that the Ac was almost 
linearly correlated with Pmax, ϕ, θ, and Rd (Fig. 4), except for the 
θ of A619 (Fig. 4C and G). We performed the simulations at 5 
stages and the results were consistent (Figs. S1 to S4). The slopes 
of these curves were higher for the upper layer (Fig. 4A to D) 
than for the bottom layer (Fig. 4E to H), indicating a greater 
impact of the parameters of the upper layer on Ac due to higher 
leaf area and absorbed light than the bottom layer.

Next, we evaluated how the plant architectural parameters 
affect canopy photosynthesis (Ac) for the 2 maize varieties. Using 
the above models, we generated virtual canopies and proportional 
manipulated leaf width (LW) and leaf length (LL) (ranging from 
0.6 to 2.0), additive changed leaf number (LN) (from −4 to 8), 
leaf curvature (LC) (from −180° to 180°) and leaf angle (LA) 
(from −20° to 40°) to determine the daily total canopy photosyn-
thetic CO2 uptake (Ac,d). The relationships between these archi-
tectural traits and Ac,d were non-linear in most situations (Fig. 5). 
The optimal values of some traits can be identified from the sim-
ulation, such as leaf curvature and leaf angle at DAS 31 (Fig. 5D 
and E) and leaf width and length at DAS 38 (Fig. 5G and H).

Leaf width, leaf length, and leaf number were major traits 
determining LAI (the ratio of leaf area over ground area). We 
studied how the 3 traits differ in determining LAI affect canopy 
photosynthesis by analyzing the relationship between LAI and 
Ac,d when individually changing the traits. The simulation por-
trayed that Ac,d had a more significant increase when altering 
leaf length than when manipulating leaf width or leaf number 
(Fig. 7). In addition, the impact on Ac,d was similar when mod-
ifying either leaf width or leaf number. The results for cultivar 
A619 were consistent with W64A. The optimal values for the 
adjustment varied across the 2 maize varieties and develop-
mental stages as indicated by Fig. 6 and Fig. S5, indicating the 
influence of one architectural trait on other architectural and 
photosynthetic attributes.

Contributions of canopy structure, leaf light 
absorbance, and leaf photosynthesis to canopy 
photosynthesis dissected with model
The diurnal canopy photosynthetic CO2 uptake rate (Ac) was 
calculated for the 2 inbred lines at 5 stages: DAS 31, 38, 45, 52, 

(19)rA619=0.002478 ∗ SPAD
2
−0.3554 ∗ SPAD + 16.66

(20)rW64A = − 0.04863 ∗ SPAD + 8.856

Table 1. The parameters and goodness of linear fitting between the extracted plant architectural parameters from point cloud and the man-
ually measured plant architectural parameters. The plant architectural parameters include leaf base height, leaf length, leaf width, and leaf 
area. N is the number of leaves used for the linear fitting and the data are from 5 stages and 8 plants for each stage. The fitting equation Y = 
p1 * X + p2, where X is measured data and Y is calculated results. R2 and root mean squared error (RMSE) of the linear fitting are presented.

Lines Architectural traits p1 (with 95% confidence bounds) p2 (with 95% confidence bounds) R2 RMSE N

W64A Leaf base height 0.993 (0.968, 1.017) 1.162 (0.140, 2.183) 0.972 4.262 184

Leaf length 1.067 (1.022, 1.111) −2.755 (−5.218, −0.292) 0.925 3.232 184

Leaf width 0.897 (0.829, 0.965) 1.309 (0.819, 1.798) 0.789 0.742 184

Leaf area 1.042 (0.985, 1.100) −6.848 (−24.890, 11.190) 0.876 38.442 184

A619 Leaf base height 1.004 (0.974, 1.035) 0.986 (−0.076, 2.048) 0.963 4.114 163

Leaf length 1.144 (1.061, 1.226) −7.841 (−12.990, −2.691) 0.824 4.297 163

Leaf width 0.912 (0.817, 1.007) 1.248 (0.532, 1.965) 0.691 0.666 163

Leaf area 1.184 (1.102, 1.267) −53.76 (−84.84, −22.67) 0.835 44.888 163 D
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Fig. 3. The phenotype data of plant architecture, leaf reflectance and transmittance, leaf chlorophyll, and leaf photosynthesis. (A) Photos and point clouds of 2 maize inbred lines 
with different architecture, lines W64A and A619, at 5 developmental stages including the 31st, 38th, 45th, 52nd, and 59th day after sowing (DAS). (B to G) Plant architectural 
parameters, including leaf number per plant, stem height, average leaf length, maximal leaf length, average leaf width, and maximal leaf width. These parameters were measured 
at 4 stages, and the architecture at the 59th DAS was assumed to be the same as the 52nd DAS. (H and I) The relationship between leaf transmittance and SPAD, and the 
relationship between leaf reflectance and SPAD. (J) Leaf chlorophyll contents (SPAD values) for 2 maize inbred lines (W64A and A619) at different developmental stages 
(31st, 38th, 45th, 52nd, and 59th days after sowing, DAS). (K and L) Calculated leaf transmittance and reflectance for the 2 maize inbred lines at 5 stages. Data in (B) to (G) 
and (J) to (L) are shown as mean ± SD (n = 8 biological replicates). (M) Light response curve of photosynthesis for up layer and bottom layer leaves of lines W64A and A619. 
Data are shown as mean ± SD (n = 5 biological replicates) and the P values of statistical analysis are shown in Table S2. (N and O) Leaf net photosynthetic CO2 assimilation 
rate (Asat) measured under saturated light (photosynthetic photon flux density, PPFD, 1,200 μmol m−2 s−1) for the up layer and bottom layer of the lines W64A and A619 
at 5 stages. (P and Q) Quantum yield of CO2 assimilation (ΦCO2), the initial slope of the light response curve of leaf photosynthesis, for the up layer and bottom layer of the 
lines W64A and A619 at 5 stages. The slope was fitted with data points measured under PPFD 50, 100, 150, and 200 μmol m−2 s−1. Data in (N) to (Q) are shown as mean ± SD 
(n = 5 biological replicates), ** represent P < 0.01 and * represent P < 0.05 determined by the Student’s t test.
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A B C D

E F G H

Fig. 4. Relationship between leaf photosynthetic parameters (up and bottom layer leaves) and canopy photosynthesis rate (Ac) at the second stage (DAS 38) for the 2 maize 
inbred lines (blue line: W64A; red line: A619) derived with the modeling pipeline. Leaf photosynthetic parameters include the maximal photosynthesis rate Pmax, quantum yield 
ϕ, convexity of light curve θ, and respiration rate Rd of up layer (A to D) and bottom layer leaves (E to H). Data used for building models were measured data on the 38th day 
after sowing. Data were shown as mean ± SD (n = 5 repeats of model simulation). Simulations for other stages are shown in Figs. S1 to S4.

A B C D E

F G H I J

K L M N O

Fig. 5. Non-linear relationship between plant architectural traits and daily canopy photosynthesis (Ac) calculated with the modeling pipeline. The sensitivity analysis was done 
at different stages: DAS 31 (A to E), DAS 38 (F to J), and DAS 59 (K to O) for the 2 maize W64A (blue line) and A619 (red line). Plant architectural parameters are LW: leaf width; 
LL: leaf length; LN: leaf number; LC: leaf curvature; and LA: leaf angle. Arrows show the optimal values of adjustment. The relative change of traits (for LW and LL) was the 
multiplied factor based on the original value of cultivar W64A and A619. The LN change number was the leaf number increased or decreased. The LC and LA change degree 
was the degree increased or decreased based on the original plant. Data were shown as mean ± SD (n = 5 repeats of model simulation). Simulations for the other 2 stages 
(DAS 45 and 52) are shown in Fig. S5.
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and 59. Results indicate that the A619 had a significantly higher 
Ac than W64A at all stages (Fig. 7A to E). To determine the 
factors contributing to the difference in canopy photosynthesis 
between W64A and A619, virtual canopies were created with 
different combinations of traits from the 2 maize inbred lines 
(Table 2). The whole day Ac (Ac,d) of these canopies was then 
calculated. We used equations (Eqs. 11 to 17) to evaluate the 
contributions of each trait and the interactions between them. 
Analysis presented in Fig. 7F to J shows that leaf photosynthesis 
had the most significant impact on Ac,d. The trait of leaf pho-
tosynthesis from A619 increased Ac,d of W64A by 17.5% to 
29.2% at different stages, while the trait of canopy structure 
from A619 increased Ac,d of W64A by −1.6% to 6.7% at differ-
ent stages (Fig. 7F to J). The contributions of trait related to 
leaf transmittance and reflectance (predicted with chlorophyll 

content) and the interactions between 2 traits or among 3 traits 
to Ac,d was less than 2% (Fig. 7F to J).

To understand the contributions of specific traits to Ac,d. We 
divided the leaf photosynthesis into parameters of Pmax, ϕ, θ, 
and Rd for up and bottom layer leaves, and the plant architec-
ture into leaf length (LL), leaf width (LW), leaf curvature (LC), 
and leaf angle (LA) for up and bottom layer leaves, and leaf 
number per plant (LN). Using the model and dissection 
method, we calculated the relative change of Ac,d when substi-
tuting each trait of W64A by the value from A619 (Figs. 8 and 
9). The relative difference of the individual traits between 
the 2 inbred lines was also calculated as (TraitA619 − TraitW64A)/
TraitW64A. Leaf photosynthesis-related traits such as Pmax, ϕ, θ, 
and Rd were fitted from light response curves. Although leaf 
photosynthesis was identified as the major factor controlling 

A B C D E

F G H I J

Fig. 6. The shared function between leaf width, leaf length, and leaf number in controlling Ac,d shown by the relationship between diurnal canopy photosynthetic CO2 uptake 
rate (Ac,d) and leaf area index (LAI). The analysis was performed for W64A (A to E) and A619 (F to J) with the modeling pipeline. The LAI variation in the horizontal axis was 
achieved by changing leaf width (red line), leaf length (black line), and leaf number (blue line), respectively. Data are shown as mean ± SD (n = 5 repeats of model simulation).

A B C D E

F G H I J

Fig. 7. Difference of diurnal canopy photosynthesis between the 2 main inbred lines (A to E) and the dissected contributions of canopy structure, leaf photosynthesis, leaf 
chlorophyll, and their interactions (F to J). Two inbred lines: W64A (purple line) and A619 (green line) at 5 stages: 31, 38, 45, 52, and 59 days after sowing (DAS). Data were 
calculated with the modeling pipeline and shown as mean ± SD (n = 5 times of model calculation).
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the difference between W64A and A619, the impact of each 
trait on Ac,d was unclear. Therefore, virtual canopies were cre-
ated by replacing each parameter from A619 to W64A to assess 
the impact of each trait (Fig. 8). The relative change of these 
traits was different between the 2 inbred lines at different stages 
(Fig. 8). For example, the change of Pmax, θ, and Rd was almost 
the same at DAS 31, but θ for up layer leaves was the largest 
one at stage 2 (DAS 38). Leaf length of the up layer leaves, leaf 
number, and leaf width of the bottom layer leaves were the 
major contributors to the Ac,d at the first stage (DAS 31) (Fig. 
9F). Similarly, the major contributors were also identified at 

other stages (Fig. 9G to J). Notably, the contribution of a single 
trait to Ac,d was even higher than the contribution of the com-
plete plant architecture to Ac,d in the last 3 stages (Fig. 7H to J), 
because different traits may have opposite effects on canopy 
photosynthesis (Fig. 7H to J).

From the dissection results, we can project the function of 
light response curve parameters and canopy architectural traits 
to the influence of canopy photosynthesis.

Discussion

Dissection of factors responsible for difference in 
canopy photosynthesis between cultivars
This study developed a novel 3D canopy modeling pipeline, and 
the contributions of plant architectural traits, leaf absorbance, 
and leaf photosynthetic parameters to canopy photosynthesis 
were dissected (Fig. 1). Quantifying the contributions of differ-
ent traits is essential for studying the genetic mechanism of 
canopy photosynthesis. Canopy photosynthesis is a complex 
trait influenced by many traits, such as leaf photosynthetic effi-
ciency, leaf absorbance, and plant architectural traits. A survey 
of maize cultivars has shown substantial genetic variations in 
maize leaf photosynthesis [22]. Leaf photosynthetic capacity can 
be improved by various options reviewed in Refs. [20,21,49], 
such as increasing leaf nitrogen content [50] and optimizing 
nitrogen allocation among enzymes [51,52]. In the current 
study, leaf photosynthetic efficiency is the primary factor con-
trolling canopy photosynthesis (Ac) with an impact of 17.5% to 
29.2% to the difference of Ac between the 2 varieties (Fig. 7F to 
J). Further analysis shows that the parameters such as Pmax, ϕ, 
and θ of the top layer and ϕ of the bottom layer significantly 
influenced canopy photosynthesis. While Pmax determines pho-
tosynthesis at high light, ϕ (initial slope of the light response 
curve) determines the low-light CO2 assimilation rate, and θ 
(the convexity of light curve) influences photosynthesis under 
medium light levels. From the dissection analysis, we found that 

Table 2. Scenarios used to calculate net canopy photosynthetic 
CO2 uptake rate (Ac), which is used to dissect the contributions 
of individual trait (plant architecture, leaf photosynthesis, and 
chlorophyll content) and their interactions to the difference in 
Ac. Symbol shows different combinations; “W” means the trait 
is from the inbred line W64A and “A” means the trait is from the 
inbred line A619.

Symbol
Plant architec-

ture
Leaf photosyn-

thesis
Chlorophyll 

content

O W W W

S A W W

P W A W

C W W A

S,C A W A

S,P A A W

P,C W A A

S,P,C A A A

A B C D E

F G H I J

Fig. 8. The relative changes of leaf photosynthetic traits (Pmax, ϕ, and θ) of up layer (red bars) and bottom layer (blue bars) (A to E) and their contributions to the difference 
of canopy photosynthesis between the 2 varieties (F to J). Data were calculated with the modeling pipeline and shown as mean ± SD (n = 5 times of model calculation).
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plant architecture determines light distribution in the canopy 
at different developmental stages, affecting the relative impor-
tance of Pmax and initial slope of the light response curve in 
controlling the difference of Ac,d between the 2 maize varieties. 
Furthermore, as chlorophyll content and antenna size determine 
light harvesting capacity, ϕ of the bottom layer leaves also influ-
enced Ac,d between the 2 maize varieties (at stages 2, 3, and 4) 
(Fig. 8).

Recent studies in rice show that at the bottom layer of a 
canopy, chlorophyll content and antenna size need to be kept 
or increased to improve canopy photosynthesis [53], and opti-
mal nitrogen partitioning is required for enhancing leaf pho-
tosynthesis [54]. Nonetheless, the changes in leaf chlorophyll 
content did not contribute to the difference of Ac,d between the 
2 maize varieties (Fig. 7F to J). In contrast, previous modeling 
studies show that when leaf chlorophyll content decreases, 
more light can penetrate to the lower layer of a canopy in rice 
[47] and soybean [55]. The canopy photosynthesis can be 
increased by 3% when chlorophyll is decreased by 40% based 
on a modeling study [47]. In the current study, the leaf trans-
mittance of A619 was 2% to 4% lower than W64A, while leaf 
reflectance was about 1% different between 2 varieties at the 
first 2 stages and nearly the same at other stages (Fig. 3K and 
L). The relatively small difference of leaf absorbance between 
the 2 varieties explained the little contribution of Ac,d (Fig. 
7F to J).

A limitation of the dissection method is that gene linkage 
and gene pleiotropy cause trade-offs between traits, making 
it challenging to decouple them. Therefore, a recently pub-
lished technology to target a gene regulatory element has been 
proposed to address this challenge [56]. Another limitation 
of the current method is that it does not include total nitrogen 
content in the virtual canopy simulations. There are variations 
in photosynthetic properties for leaves at different positions 
of a canopy. The nitrogen content in the canopy can be used 
to estimate the leaf photosynthetic properties for different 

leaves, and hence better calculate whole canopy photosyn-
thetic efficiency [50].

Factors controlling canopy photosynthesis in a 
maize canopy
Dissection of factors that are responsible for the difference in 
canopy photosynthesis between cultivars can help guide com-
bination of traits to improve canopy photosynthesis for a par-
ticular cultivar. Similar to this current study, such analysis 
has also been done for 2 elite rice cultivars, i.e., 9311 and 
HuangHuaZhan [37]. Results from such analysis can immedi-
ately be used to guide current crop breeding. In addition to 
this, canopy photosynthesis models can be directly used to 
identify factors that can be modified to gain improved canopy 
photosynthesis through sensitivity analysis.

Our analysis using maize canopy models here show that 
photosynthetic parameters, such as Pmax, ϕ, and θ, all show a 
linear relationship with canopy photosynthesis (Fig. 4), while 
leaf respiration shows a negative relationship with canopy pho-
tosynthesis (Fig. 4). This supports the notion that improving 
photosynthetic efficiency is an effective approach to improve 
crop yield [20]. Similarly, decreasing respiration is also another 
major option to improve crop yield potential [57]. The observed 
linear relationship between canopy photosynthesis and either 
Pmax or ϕ reflects that photosynthesis of both the upper leaves 
and lower canopy leaves together form the total canopy photo-
synthesis [58]. In the field, increasing leaf photosynthesis usu-
ally led to increased biomass though the percentage of canopy 
photosynthesis is less than the increase in leaf photosynthesis, 
e.g., as in the case of elevated CO2 [1]. More studies are needed 
to understand why the percentage increase in biomass is less 
than the percentage increase in leaf photosynthesis in the field.

Sensitivity analysis also showed that altering leaf width, leaf 
length, and leaf number can similarly influence Ac,d (Fig. 6). 
Thus, it is difficult to get a correlation between one architectural 

A B C D E

F G H I J

Fig. 9. The relative changes of canopy architectural traits (LW: leaf width; LL: leaf length; LC: leaf curvature; LA: leaf angle) of up layer (red bars) and bottom layer (blue bars) 
as well as the leaf number (LN) (yellow bars) (A to E) and their contributions to the difference of daily canopy photosynthesis (Ac,d) between the 2 varieties (F to J). Data were 
calculated with the modeling pipeline and shown as mean ± SD (n = 5 times of model calculation).
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trait with biomass or crop yield because these traits co-vary 
with each other. Leaf angle and leaf curvature are also important 
traits for maize (see review by Mantilla-Perez and Fernandez 
[59]), especially for the planting densities [60–63]. Further 
improving the maize planting density is regarded as a major 
area of research globally [64].

Enhanced efficiency in 3D canopy modeling: A multi-
view stereo approach using the MVS64 system and 
further improvements
The MVS64 system developed in this study significantly improved 
the efficiency of constructing 3D canopy models. Compared to 
previous developed systems that rotate plants [38,40,65,66] or 
cameras [41], the MVS64 took all 64 images simultaneously. 
Therefore, the time required for capturing images was limited to 
moving pots on and off the system and waiting for leaf stabiliza-
tion (approximately 30 s per pot for manual movement). Another 
time-consuming aspect was generating the 3D point cloud from 
the images, which depended on the computer's processing speed. 
In our case, this process took approximately 20 to 40 min per 
plant, but parallel computing could significantly reduce this time. 
The MVS64 not only increased the efficiency of imaging, but also 
minimized errors caused by leaf movement. This system has the 
potential to be used in the field crop high-throughput phenotyp-
ing [67], similar to previous studies that utilized multiple cameras 
for field applications [68].

Some steps in this pipeline still exhibited low throughput, such 
as measuring leaf chlorophyll content and leaf photosynthetic 
light response curves. Multispectral or hyperspectral imaging 
has been employed to predict leaf chlorophyll content [69] and 
photosynthetic parameters [70]; however, challenges exist due to 
leaf angle and the distance between the light source and the leaves 
[71]. The light response curve can be estimated from leaf chlo-
rophyll fluorescence parameters, including quantum yield of PSII 
(ΦPSII) and electronic transport rate under varying light intensi-
ties [72]. Hyperspectral reflectance can also be employed to 
measured leaf photosynthetic efficiency [73]. The algorithm 
required to align the 3D point cloud with the 2D multispectral 
and fluorescence image was a major challenge for integrating all 
of these high-throughput technologies in 3D canopy photosyn-
thesis modeling. The 3D canopy modeling pipeline can support 
not only the MVS64 system, but also other facilities capable of 
generating point clouds. For the purpose of reducing facility 
costs, other types of MVS systems developed in previous studies 
[38–41], as well as LiDAR and depth camera, can be utilized.

The organ segmentation is essential for the 3D canopy mod-
eling pipeline, and the algorithms for point cloud segmentation 
are required for different crops. Accurate extraction of plant 
architectural parameters is also very important. In the current 
study, the maize plants have wavy leaf blade edges, which intro-
duced error to both the manually measured and the point cloud-
based calculated leaf width (Fig. 2F and J). For example, it is 
difficult to visually determine the maximal leaf width. In con-
trast, the accuracy of leaf length measurement and calculation 
was higher, because the leaf length is several times longer than 
leaf width and the relative error of the measurement was smaller.

Conclusion
This study presents a novel pipeline that offers a method to 
elucidate the connection between individual phenotypes con-
trolling the complex trait of canopy photosynthesis. Utilizing 

the pipeline, we observed a linear correlation between leaf 
photosynthetic parameters and canopy photosynthesis (Ac,d) 
in most circumstances. On the other hand, the relationship of 
canopy architectural traits with Ac,d was nonlinear, and the 
optimal values depended on the plant architecture and the 
growth stages. Our findings demonstrated that leaf photosyn-
thesis was the primary determinant (17.5% to 29.2%) for the 
disparity in canopy photosynthesis (Ac,d) between the 2 inves-
tigated maize varieties, across all growth stages. In-depth 
analysis revealed the contributions of maximal photosynthetic 
rate (Pmax), quantum yield (ϕ), and the convexity of light 
response curve (θ) for leaves at the upper and lower layers of 
canopies. Canopy architecture served as the secondary factor 
(5.3% to 6.7%), influencing the difference of Ac,d between the 
2 varieties at early stages, with the leaf width, leaf length, and 
leaf number being the major contributors. The pipeline can 
be used as a general strategy to support current ideotype 
breeding practices for enhancing crop yield and represents a 
new field of application for the modern high-throughput phe-
nomics facilities.
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